論文の概要: Shapes of Cognition for Computational Cognitive Modeling
- arxiv url: http://arxiv.org/abs/2509.13288v1
- Date: Tue, 16 Sep 2025 17:39:58 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-17 17:50:53.211665
- Title: Shapes of Cognition for Computational Cognitive Modeling
- Title(参考訳): 計算認知モデルにおける認知の形状
- Authors: Marjorie McShane, Sergei Nirenburg, Sanjay Oruganti, Jesse English,
- Abstract要約: 認知の形状は、言語発達型知的エージェントの計算認知モデルのための新しい概念パラダイムである。
形状に基づくモデリングには、特定の目的、仮説、モデリング戦略、知識ベース、および幅広い現象の実際のモデルが含まれる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Shapes of cognition is a new conceptual paradigm for the computational cognitive modeling of Language-Endowed Intelligent Agents (LEIAs). Shapes are remembered constellations of sensory, linguistic, conceptual, episodic, and procedural knowledge that allow agents to cut through the complexity of real life the same way as people do: by expecting things to be typical, recognizing patterns, acting by habit, reasoning by analogy, satisficing, and generally minimizing cognitive load to the degree situations permit. Atypical outcomes are treated using shapes-based recovery methods, such as learning on the fly, asking a human partner for help, or seeking an actionable, even if imperfect, situational understanding. Although shapes is an umbrella term, it is not vague: shapes-based modeling involves particular objectives, hypotheses, modeling strategies, knowledge bases, and actual models of wide-ranging phenomena, all implemented within a particular cognitive architecture. Such specificity is needed both to vet our hypotheses and to achieve our practical aims of building useful agent systems that are explainable, extensible, and worthy of our trust, even in critical domains. However, although the LEIA example of shapes-based modeling is specific, the principles can be applied more broadly, giving new life to knowledge-based and hybrid AI.
- Abstract(参考訳): 認知の形状は、言語中心の知的エージェント(LEIA)の計算認知モデルのための新しい概念パラダイムである。
形状は感覚的、言語的、概念的、エピソード的、手続き的知識の星座として記憶されており、エージェントが現実の生活の複雑さを人間と同じ方法で切り抜けることを可能にしている。
非定型的な結果は、ハエで学ぶこと、人間のパートナーに助けを求めること、たとえ不完全で状況的理解であっても実行可能なものを求めることなど、形状に基づく回復方法を用いて扱われる。
形状に基づくモデリングには、特定の目的、仮説、モデリング戦略、知識ベース、そして、全て特定の認知アーキテクチャ内に実装された幅広い現象の実際のモデルが含まれる。
このような特異性は、私たちの仮説を検証し、重要なドメインであっても、説明可能で拡張可能で、信頼に値する有用なエージェントシステムを構築するための実践的な目的を達成するために必要である。
しかし、形状に基づくモデリングのLEIAの例は具体的だが、その原則はより広く適用でき、知識に基づくハイブリッドAIに新たな生活をもたらす。
関連論文リスト
- Unveiling the Learning Mind of Language Models: A Cognitive Framework and Empirical Study [50.065744358362345]
大規模言語モデル(LLM)は、数学、コーディング、推論といったタスクにまたがる印象的な機能を示している。
しかし、彼らの学習能力は、動的環境に適応し、新しい知識を得るのに不可欠であり、まだ過小評価されていない。
論文 参考訳(メタデータ) (2025-06-16T13:24:50Z) - A New Approach for Knowledge Generation Using Active Inference [0.0]
セマンティックネットワークモデルを含む、人間の脳内での知識の生成方法に関する様々なモデルが提案されている。
本研究では、脳の自由エネルギー原理に基づいて、3種類の宣言的、手続き的、条件的知識を生成するモデルを提案する。
論文 参考訳(メタデータ) (2025-01-25T07:06:33Z) - Analogical Concept Memory for Architectures Implementing the Common
Model of Cognition [1.9417302920173825]
そこで我々は,Soar の新たなアナログ概念メモリを提案し,宣言的長期記憶の現在のシステムを強化した。
提案したメモリに実装されたアナログ学習手法は,多様な新しい概念を迅速に学習できることを実証する。
論文 参考訳(メタデータ) (2022-10-21T04:39:07Z) - Kernel Based Cognitive Architecture for Autonomous Agents [91.3755431537592]
本稿では,認知機能構築への進化的アプローチについて考察する。
本稿では,シンボル創発問題に基づくエージェントの進化を保証する認知アーキテクチャについて考察する。
論文 参考訳(メタデータ) (2022-07-02T12:41:32Z) - On the Opportunities and Risks of Foundation Models [256.61956234436553]
これらのモデルの基礎モデルは、批判的に中心的だが不完全な性格を根底から立証するものです。
本報告では,基礎モデルの可能性とリスクについて概説する。
これらの疑問に対処するためには、基礎モデルに関する重要な研究の多くは、深い学際的なコラボレーションが必要であると信じている。
論文 参考訳(メタデータ) (2021-08-16T17:50:08Z) - Towards a Predictive Processing Implementation of the Common Model of
Cognition [79.63867412771461]
本稿では,ニューラル生成符号化とホログラフィック連想記憶に基づく認知モデルの実装について述べる。
提案システムは,多様なタスクから継続的に学習し,大規模に人的パフォーマンスをモデル化するエージェントを開発するための基盤となる。
論文 参考訳(メタデータ) (2021-05-15T22:55:23Z) - Controlling Synthetic Characters in Simulations: A Case for Cognitive
Architectures and Sigma [0.0]
シミュレーションは、参加する合成文字に対して現実的で信頼できる振る舞いを生成する知性の計算モデルを必要とする。
Sigmaは認知アーキテクチャとシステムであり、象徴的認知アーキテクチャ、確率的グラフィカルモデル、そしてより最近のニューラルモデルに関する40年間にわたる独立した研究から学んだことを、そのグラフィカルアーキテクチャ仮説の下で組み合わせようとしている。
本稿では,Sigmaを多種多様な機能とともに導入し,その組み合わせを強調するために3つの概念実証Sigmaモデルを使用する。
論文 参考訳(メタデータ) (2021-01-06T19:07:36Z) - Characterizing an Analogical Concept Memory for Architectures
Implementing the Common Model of Cognition [1.468003557277553]
そこで我々は,Soar の新たなアナログ概念メモリを提案し,宣言的長期記憶の現在のシステムを強化した。
提案したメモリに実装されたアナログ学習手法は,多様な新しい概念を迅速に学習できることを実証する。
論文 参考訳(メタデータ) (2020-06-02T21:54:03Z) - Knowledge Patterns [19.57676317580847]
本稿では,公理に富む形式オントロジー構築を支援する新しい手法である「知識パターン」について述べる。
知識パターンは、形式オントロジーの構造に関する重要な洞察を提供する。
それらを使って構築されたテクニックとアプリケーションを説明し、その強みと弱点を批判する。
論文 参考訳(メタデータ) (2020-05-08T22:33:30Z) - Neuro-symbolic Architectures for Context Understanding [59.899606495602406]
本稿では,データ駆動型アプローチと知識駆動型アプローチの強みを組み合わせたフレームワークとして,ハイブリッドAI手法を提案する。
具体的には、知識ベースを用いて深層ニューラルネットワークの学習過程を導く方法として、ニューロシンボリズムの概念を継承する。
論文 参考訳(メタデータ) (2020-03-09T15:04:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。