論文の概要: GitHub's Copilot Code Review: Can AI Spot Security Flaws Before You Commit?
- arxiv url: http://arxiv.org/abs/2509.13650v1
- Date: Wed, 17 Sep 2025 02:56:21 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-18 18:41:50.697553
- Title: GitHub's Copilot Code Review: Can AI Spot Security Flaws Before You Commit?
- Title(参考訳): GitHubのCopilotコードレビュー:AIはコミット前にセキュリティ欠陥を発見できるか?
- Authors: Amena Amro, Manar H. Alalfi,
- Abstract要約: この研究は、セキュリティ脆弱性の検出においてGitHub Copilotが最近導入したコードレビュー機能の有効性を評価する。
期待に反して、私たちの結果は、Copilotのコードレビューが重大な脆弱性を検出するのに頻繁に失敗することを示している。
私たちの結果は、堅牢なソフトウェアセキュリティを保証するために、専用のセキュリティツールと手作業によるコード監査が引き続き必要であることを示している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As software development practices increasingly adopt AI-powered tools, ensuring that such tools can support secure coding has become critical. This study evaluates the effectiveness of GitHub Copilot's recently introduced code review feature in detecting security vulnerabilities. Using a curated set of labeled vulnerable code samples drawn from diverse open-source projects spanning multiple programming languages and application domains, we systematically assessed Copilot's ability to identify and provide feedback on common security flaws. Contrary to expectations, our results reveal that Copilot's code review frequently fails to detect critical vulnerabilities such as SQL injection, cross-site scripting (XSS), and insecure deserialization. Instead, its feedback primarily addresses low-severity issues, such as coding style and typographical errors. These findings expose a significant gap between the perceived capabilities of AI-assisted code review and its actual effectiveness in supporting secure development practices. Our results highlight the continued necessity of dedicated security tools and manual code audits to ensure robust software security.
- Abstract(参考訳): ソフトウェア開発のプラクティスがAIベースのツールを採用するにつれて、このようなツールがセキュアなコーディングをサポートできることが重要になっている。
この研究は、セキュリティ脆弱性の検出においてGitHub Copilotが最近導入したコードレビュー機能の有効性を評価する。
複数のプログラミング言語やアプリケーションドメインにまたがるさまざまなオープンソースプロジェクトから抽出されたラベル付き脆弱性コードサンプルのキュレートセットを使用して、Copilotの一般的なセキュリティ欠陥を識別し、フィードバックする能力を体系的に評価した。
期待に反して、私たちの結果は、Copilotのコードレビューが、SQLインジェクション、クロスサイトスクリプティング(XSS)、安全でないデシリアライゼーションなどの重大な脆弱性を検出するのに頻繁に失敗していることを明らかにする。
その代わりに、そのフィードバックは主に、コーディングスタイルやタイポグラフィーエラーなどの低重大問題に対処する。
これらの知見は、AI支援コードレビューの認識能力と、セキュアな開発プラクティスをサポートする上での実際の有効性との間に、大きなギャップがあることを示している。
私たちの結果は、堅牢なソフトウェアセキュリティを保証するために、専用のセキュリティツールと手作業によるコード監査が引き続き必要であることを示している。
関連論文リスト
- Towards Trustworthy GUI Agents: A Survey [64.6445117343499]
本調査では,GUIエージェントの信頼性を5つの重要な次元で検証する。
敵攻撃に対する脆弱性、シーケンシャルな意思決定における障害モードのカスケードなど、大きな課題を特定します。
GUIエージェントが普及するにつれて、堅牢な安全基準と責任ある開発プラクティスを確立することが不可欠である。
論文 参考訳(メタデータ) (2025-03-30T13:26:00Z) - RedCode: Risky Code Execution and Generation Benchmark for Code Agents [50.81206098588923]
RedCodeはリスクの高いコード実行と生成のためのベンチマークである。
RedCode-Execは、危険なコード実行につながる可能性のある、挑戦的なプロンプトを提供する。
RedCode-Genは160のプロンプトに関数シグネチャとドキュメントを入力として提供し、コードエージェントが命令に従うかどうかを評価する。
論文 参考訳(メタデータ) (2024-11-12T13:30:06Z) - Toward Effective Secure Code Reviews: An Empirical Study of Security-Related Coding Weaknesses [14.134803943492345]
我々は OpenSSL と PHP の2つの大規模オープンソースプロジェクトで実証的なケーススタディを行った。
135,560のコードレビューコメントに基づいて、40のコーディング弱点カテゴリのうち35に、レビュー担当者がセキュリティ上の懸念を提起していることが分かりました。
メモリエラーやリソース管理といった過去の脆弱性に関連するコーディングの弱点は、脆弱性よりも少ない頻度で議論された。
論文 参考訳(メタデータ) (2023-11-28T00:49:00Z) - Assessing the Security of GitHub Copilot Generated Code -- A Targeted
Replication Study [11.644996472213611]
最近の研究は、GitHub CopilotやAmazon CodeWhispererといったAIによるコード生成ツールのセキュリティ問題を調査している。
本稿では、コパイロットのセキュリティの弱点を調査し、コパイロットが提案するコードにいくつかの弱点を発見したPearce et al.の研究を再現する。
我々の結果は、新しいバージョンのCopilotが改良されても、脆弱性のあるコード提案の割合が36.54%から27.25%に減少していることを示している。
論文 参考訳(メタデータ) (2023-11-18T22:12:59Z) - Security Weaknesses of Copilot-Generated Code in GitHub Projects: An Empirical Study [8.364612094301071]
GitHub Copilotと他の2つのAIコード生成ツールによって生成されたコードスニペットを分析します。
分析の結果,733個のスニペットが検出され,セキュリティ上の脆弱性の可能性が高め,Pythonの29.5%,JavaScriptの24.2%が影響を受けることがわかった。
生成されたコードのセキュリティ問題を軽減するために提案する。
論文 参考訳(メタデータ) (2023-10-03T14:01:28Z) - Generation Probabilities Are Not Enough: Uncertainty Highlighting in AI Code Completions [54.55334589363247]
本研究では,不確実性に関する情報を伝達することで,プログラマがより迅速かつ正確にコードを生成することができるかどうかを検討する。
トークンのハイライトは、編集される可能性が最も高いので、タスクの完了が早くなり、よりターゲットを絞った編集が可能になることがわかりました。
論文 参考訳(メタデータ) (2023-02-14T18:43:34Z) - CodeLMSec Benchmark: Systematically Evaluating and Finding Security
Vulnerabilities in Black-Box Code Language Models [58.27254444280376]
自動コード生成のための大規模言語モデル(LLM)は、いくつかのプログラミングタスクにおいてブレークスルーを達成した。
これらのモデルのトレーニングデータは、通常、インターネット(例えばオープンソースのリポジトリから)から収集され、障害やセキュリティ上の脆弱性を含む可能性がある。
この不衛生なトレーニングデータは、言語モデルにこれらの脆弱性を学習させ、コード生成手順中にそれを伝播させる可能性がある。
論文 参考訳(メタデータ) (2023-02-08T11:54:07Z) - Dos and Don'ts of Machine Learning in Computer Security [74.1816306998445]
大きな可能性にもかかわらず、セキュリティにおける機械学習は、パフォーマンスを損なう微妙な落とし穴を引き起こす傾向がある。
我々は,学習ベースのセキュリティシステムの設計,実装,評価において共通の落とし穴を特定する。
我々は,落とし穴の回避や軽減を支援するために,研究者を支援するための実用的な勧告を提案する。
論文 参考訳(メタデータ) (2020-10-19T13:09:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。