論文の概要: Graph-Regularized Learning of Gaussian Mixture Models
- arxiv url: http://arxiv.org/abs/2509.13855v1
- Date: Wed, 17 Sep 2025 09:41:26 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-18 18:41:50.805061
- Title: Graph-Regularized Learning of Gaussian Mixture Models
- Title(参考訳): ガウス混合モデルのグラフ規則化学習
- Authors: Shamsiiat Abdurakhmanova, Alex Jung,
- Abstract要約: 本稿では,ガウス混合モデル(GMM)の非均一かつ限定的な局所データを用いた分散環境におけるグラフ正規化学習について述べる。
この方法は、提供された類似性グラフを利用して、ノード間のパラメータ共有をガイドし、生データの転送を避ける。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a graph-regularized learning of Gaussian Mixture Models (GMMs) in distributed settings with heterogeneous and limited local data. The method exploits a provided similarity graph to guide parameter sharing among nodes, avoiding the transfer of raw data. The resulting model allows for flexible aggregation of neighbors' parameters and outperforms both centralized and locally trained GMMs in heterogeneous, low-sample regimes.
- Abstract(参考訳): 本稿では,ガウス混合モデル(GMM)の非均一かつ限定的な局所データを用いた分散環境でのグラフ正規化学習について述べる。
この方法は、提供された類似性グラフを利用して、ノード間のパラメータ共有をガイドし、生データの転送を避ける。
結果として得られるモデルは、近隣のパラメータの柔軟な集約を可能にし、不均一で低サンプルな状態において、集中的に訓練されたGMMと局所的に訓練されたGMMの両方より優れている。
関連論文リスト
- Adaptive Fuzzy C-Means with Graph Embedding [84.47075244116782]
ファジィクラスタリングアルゴリズムは、大まかに2つの主要なグループに分類できる: ファジィC平均法(FCM)と混合モデルに基づく方法。
本稿では,FCMを用いたクラスタリングモデルを提案する。
論文 参考訳(メタデータ) (2024-05-22T08:15:50Z) - Deep Graph Clustering via Mutual Information Maximization and Mixture
Model [6.488575826304023]
クラスタリングに親しみやすいノード埋め込みを学習するための対照的な学習フレームワークを導入する。
実世界のデータセットを用いた実験により,コミュニティ検出における本手法の有効性が示された。
論文 参考訳(メタデータ) (2022-05-10T21:03:55Z) - Data-heterogeneity-aware Mixing for Decentralized Learning [63.83913592085953]
グラフの混合重みとノード間のデータ不均一性の関係に収束の依存性を特徴付ける。
グラフが現在の勾配を混合する能力を定量化する計量法を提案する。
そこで本研究では,パラメータを周期的かつ効率的に最適化する手法を提案する。
論文 参考訳(メタデータ) (2022-04-13T15:54:35Z) - Score-based Generative Modeling of Graphs via the System of Stochastic
Differential Equations [57.15855198512551]
本稿では,連続時間フレームワークを用いたグラフのスコアベース生成モデルを提案する。
本手法は, トレーニング分布に近い分子を生成できるが, 化学価数則に違反しないことを示す。
論文 参考訳(メタデータ) (2022-02-05T08:21:04Z) - Modeling Graph Node Correlations with Neighbor Mixture Models [8.845058366817227]
本稿では,グラフ内のノードラベルをモデル化するための新しいモデルであるneighne mixture model (nmm)を提案する。
このモデルは,周辺地域のノードのラベル間の相関を捉えることを目的としている。
提案したNMMは,実世界のラベル付きグラフのモデリングにおける最先端の進歩を示す。
論文 参考訳(メタデータ) (2021-03-29T21:41:56Z) - A Rigorous Link Between Self-Organizing Maps and Gaussian Mixture Models [78.6363825307044]
本研究は、自己組織化マップ(SOM)とガウス混合モデル(GMM)の関係を数学的に扱うものである。
我々は,エネルギーベースSOMモデルを勾配勾配下降と解釈できることを示した。
このリンクはSOMsを生成確率モデルとして扱うことができ、SOMsを使用して外れ値を検出したりサンプリングしたりするための正式な正当性を与える。
論文 参考訳(メタデータ) (2020-09-24T14:09:04Z) - DeepGMR: Learning Latent Gaussian Mixture Models for Registration [113.74060941036664]
ポイントクラウドの登録は、3Dコンピュータビジョン、グラフィックス、ロボット工学の基本的な問題である。
本稿では,最初の学習ベース登録法であるDeep Gaussian Mixture Registration(DeepGMR)を紹介する。
提案手法は,最先端の幾何学的および学習的登録手法と比較して,良好な性能を示す。
論文 参考訳(メタデータ) (2020-08-20T17:25:16Z) - Semi-Supervised Learning with Normalizing Flows [54.376602201489995]
FlowGMMは、フローの正規化を伴う生成半教師付き学習におけるエンドツーエンドのアプローチである。
我々は AG-News や Yahoo Answers のテキストデータなど,幅広いアプリケーションに対して有望な結果を示す。
論文 参考訳(メタデータ) (2019-12-30T17:36:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。