論文の概要: On the Use of Agentic Coding: An Empirical Study of Pull Requests on GitHub
- arxiv url: http://arxiv.org/abs/2509.14745v1
- Date: Thu, 18 Sep 2025 08:48:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-19 17:26:53.130958
- Title: On the Use of Agentic Coding: An Empirical Study of Pull Requests on GitHub
- Title(参考訳): Agentic Codingの利用について - GitHubにおけるプルリクエストの実証的研究
- Authors: Miku Watanabe, Hao Li, Yutaro Kashiwa, Brittany Reid, Hajimu Iida, Ahmed E. Hassan,
- Abstract要約: 大規模言語モデル(LLM)は、ソフトウェア開発プロセスに統合されつつある。
自律的なAIエージェントを使用して、コードを生成し、人間の介入を最小限に抑えたプルリクエストを提出する能力は、標準のプラクティスになる可能性がある。
エージェントコーディングツールであるClaude Codeを使って生成した567のGitHubプルリクエスト(PR)を、157のオープンソースプロジェクトで実証研究しました。
- 参考スコア(独自算出の注目度): 6.7302091035327285
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs) are increasingly being integrated into software development processes. The ability to generate code and submit pull requests with minimal human intervention, through the use of autonomous AI agents, is poised to become a standard practice. However, little is known about the practical usefulness of these pull requests and the extent to which their contributions are accepted in real-world projects. In this paper, we empirically study 567 GitHub pull requests (PRs) generated using Claude Code, an agentic coding tool, across 157 diverse open-source projects. Our analysis reveals that developers tend to rely on agents for tasks such as refactoring, documentation, and testing. The results indicate that 83.8% of these agent-assisted PRs are eventually accepted and merged by project maintainers, with 54.9% of the merged PRs are integrated without further modification. The remaining 45.1% require additional changes benefit from human revisions, especially for bug fixes, documentation, and adherence to project-specific standards. These findings suggest that while agent-assisted PRs are largely acceptable, they still benefit from human oversight and refinement.
- Abstract(参考訳): 大規模言語モデル(LLM)は、ソフトウェア開発プロセスに統合されつつある。
自律的なAIエージェントを使用して、コードを生成し、人間の介入を最小限に抑えたプルリクエストを提出する能力は、標準のプラクティスになる可能性がある。
しかしながら、これらのプルリクエストの実用的有用性や、それらのコントリビューションが実際のプロジェクトで受け入れられる程度についてはほとんど分かっていない。
本稿では,エージェントコーディングツールであるClaude Codeを使って生成した567のGitHubプルリクエスト(PR)を,157のさまざまなオープンソースプロジェクトで実証研究する。
私たちの分析によると、開発者はリファクタリングやドキュメント、テストといったタスクにエージェントに依存する傾向があります。
その結果、これらのエージェント支援PRの83.8%が最終的にプロジェクトメンテナーによって受け入れられ、マージされ、54.9%がさらなる変更なしに統合されることがわかった。
残りの45.1%は、特にバグ修正、ドキュメント、プロジェクト固有の標準への準拠のために、人間の修正による追加的な変更を必要とする。
これらの結果は, エージェント支援PRは広く受け入れられるが, 人間の監視と改善の恩恵を受けていることを示唆している。
関連論文リスト
- Code with Me or for Me? How Increasing AI Automation Transforms Developer Workflows [60.04362496037186]
本研究は,コーディングエージェントと開発者インタラクションを制御した最初の研究である。
我々は,2つの主要な協調型およびエージェント型符号化アシスタントの評価を行った。
結果から,エージェントはコピロトを超える方法で開発者を支援することができることがわかった。
論文 参考訳(メタデータ) (2025-07-10T20:12:54Z) - PatchTrack: A Comprehensive Analysis of ChatGPT's Influence on Pull Request Outcomes [0.0]
自称ChatGPT使用量を含む255のGitHubリポジトリからのプルリクエストを分析します。
PatchTrackは、ChatGPTパッチが適用されているか、適用されていないかを分類するツールです。
89件のプルリクエストと統合パッチの質的分析により, 構造統合, 選択的抽出, 反復精製の繰り返しパターンが明らかになった。
論文 参考訳(メタデータ) (2025-05-12T16:09:33Z) - Unveiling Pitfalls: Understanding Why AI-driven Code Agents Fail at GitHub Issue Resolution [22.03052751722933]
問題解決フェーズにおけるPythonの実行エラーは、低解像度率と推論オーバーヘッドの増加と相関している。
私たちは、ModuleNotFoundErrorやTypeErrorのような最も一般的なエラーを特定し、OSErrorやデータベース関連の問題のような特に困難なエラーを強調しました。
論文 参考訳(メタデータ) (2025-03-16T06:24:51Z) - Evaluating Software Development Agents: Patch Patterns, Code Quality, and Issue Complexity in Real-World GitHub Scenarios [13.949319911378826]
この調査は、500の現実のGitHubイシューで上位10のエージェントから4,892のパッチを評価した。
一人のエージェントが支配的であり、170の問題が未解決であり、改善の余地があった。
ほとんどのエージェントはコードの信頼性とセキュリティを維持し、新しいバグや脆弱性を避けた。
一部のエージェントはコードの複雑さを増し、多くの重複を減らし、コードの臭いを最小限にした。
論文 参考訳(メタデータ) (2024-10-16T11:33:57Z) - Towards Exception Safety Code Generation with Intermediate Representation Agents Framework [54.03528377384397]
大規模言語モデル(LLM)は、しばしば生成されたコードの堅牢な例外処理に苦しむ。
中間表現(IR)アプローチにより,LLM生成コードの例外安全性を実現する新しいマルチエージェントフレームワークであるSeekerを提案する。
Seekerは例外処理をScanner, Detector, Predator, Ranker, Handlerの5つの特殊エージェントに分解する。
論文 参考訳(メタデータ) (2024-10-09T14:45:45Z) - Alibaba LingmaAgent: Improving Automated Issue Resolution via Comprehensive Repository Exploration [64.19431011897515]
本稿では,問題解決のためにソフトウェアリポジトリ全体を包括的に理解し,活用するために設計された,新しいソフトウェアエンジニアリング手法であるAlibaba LingmaAgentを提案する。
提案手法では,重要なリポジトリ情報を知識グラフに凝縮し,複雑さを低減し,モンテカルロ木探索に基づく戦略を採用する。
Alibaba Cloudの製品展開と評価において、LingmaAgentは、開発エンジニアが直面した社内問題の16.9%を自動で解決し、手作業による介入で43.3%の問題を解決した。
論文 参考訳(メタデータ) (2024-06-03T15:20:06Z) - Generative AI for Pull Request Descriptions: Adoption, Impact, and
Developer Interventions [11.620351603683496]
GitHubのCopilot for Pull Requests (PR)は、PRに関連するさまざまな開発者タスクを自動化することを目的とした有望なサービスである。
本研究では,生成AIによって記述の一部が作成された18,256個のPRについて検討した。
われわれは、Copilot for PRは幼少期ではあるが、採用が著しく増加していることを示唆している。
論文 参考訳(メタデータ) (2024-02-14T06:20:57Z) - Enhancing Open-Domain Task-Solving Capability of LLMs via Autonomous Tool Integration from GitHub [79.31134731122462]
オープンドメインのタスク解決能力を評価するためにOpenActベンチマークを導入します。
我々は,オープンドメインの進化するクエリに,GitHubから専門ツールを自律的に統合することで対処できる,新しいLLMベースのエージェントシステムであるOpenAgentを紹介する。
論文 参考訳(メタデータ) (2023-12-28T15:47:30Z) - Interactive Code Generation via Test-Driven User-Intent Formalization [60.90035204567797]
大きな言語モデル(LLM)は、非公式な自然言語(NL)の意図からコードを生成する。
自然言語は曖昧であり、形式的な意味論が欠けているため、正確性の概念を定義するのは難しい。
言語に依存しない抽象アルゴリズムと具体的な実装TiCoderについて述べる。
論文 参考訳(メタデータ) (2022-08-11T17:41:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。