論文の概要: Self-Explaining Reinforcement Learning for Mobile Network Resource Allocation
- arxiv url: http://arxiv.org/abs/2509.14925v1
- Date: Thu, 18 Sep 2025 13:04:29 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-19 17:26:53.224428
- Title: Self-Explaining Reinforcement Learning for Mobile Network Resource Allocation
- Title(参考訳): 移動体ネットワーク資源配分のための自己説明型強化学習
- Authors: Konrad Nowosadko, Franco Ruggeri, Ahmad Terra,
- Abstract要約: 自己説明型ニューラルネットワーク(SENN)に基づく解を提案する。
提案手法は, モデル動作の局所的および大域的説明を強固に生成するための低次元問題を対象としている。
モバイルネットワークにおける資源配分問題に対する提案手法の評価を行い,SENNが競合性能を持つ解釈可能な解を構成することを実証した。
- 参考スコア(独自算出の注目度): 0.04369550829556577
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Reinforcement Learning (RL) methods that incorporate deep neural networks (DNN), though powerful, often lack transparency. Their black-box characteristic hinders interpretability and reduces trustworthiness, particularly in critical domains. To address this challenge in RL tasks, we propose a solution based on Self-Explaining Neural Networks (SENNs) along with explanation extraction methods to enhance interpretability while maintaining predictive accuracy. Our approach targets low-dimensionality problems to generate robust local and global explanations of the model's behaviour. We evaluate the proposed method on the resource allocation problem in mobile networks, demonstrating that SENNs can constitute interpretable solutions with competitive performance. This work highlights the potential of SENNs to improve transparency and trust in AI-driven decision-making for low-dimensional tasks. Our approach strong performance on par with the existing state-of-the-art methods, while providing robust explanations.
- Abstract(参考訳): ディープニューラルネットワーク(DNN)を組み込んだ強化学習(RL)手法は強力だが、透明性に欠けることが多い。
ブラックボックスの特徴は、特に臨界領域において、解釈可能性を妨げるとともに、信頼性を低下させる。
RLタスクにおけるこの課題に対処するため、予測精度を維持しながら解釈性を向上させるための説明抽出法とともに、自己説明ニューラルネットワーク(SENN)に基づくソリューションを提案する。
提案手法は, モデル動作の局所的および大域的説明を強固に生成するための低次元問題を対象としている。
モバイルネットワークにおける資源配分問題に対する提案手法の評価を行い,SENNが競合性能を持つ解釈可能な解を構成することを実証した。
この研究は、低次元タスクに対するAI駆動による意思決定における透明性と信頼を改善するためのSENNの可能性を強調している。
提案手法は, 従来の最先端手法と同等の性能を示しながら, 堅牢な説明を提供する。
関連論文リスト
- Neural Networks Decoded: Targeted and Robust Analysis of Neural Network Decisions via Causal Explanations and Reasoning [9.947555560412397]
本稿では、因果推論理論に基づく新しい手法TRACERを紹介し、DNN決定の根底にある因果ダイナミクスを推定する。
提案手法は入力特徴に系統的に介入し,特定の変化がネットワークを介してどのように伝播するかを観察し,内部の活性化と最終的な出力に影響を与える。
TRACERはさらに、モデルバイアスの可能性のある反ファクトを生成することで説明可能性を高め、誤分類に対する対照的な説明を提供する。
論文 参考訳(メタデータ) (2024-10-07T20:44:53Z) - Perturbation on Feature Coalition: Towards Interpretable Deep Neural Networks [0.1398098625978622]
ディープニューラルネットワーク(DNN)の“ブラックボックス”という性質は、透明性と信頼性を損なう。
本稿では,ネットワークの深い情報を利用して相関した特徴を抽出する,特徴連立による摂動に基づく解釈を提案する。
論文 参考訳(メタデータ) (2024-08-23T22:44:21Z) - Network Inversion of Binarised Neural Nets [3.5571131514746837]
ニューラルネットワークの出力マッピングに対する入力のブラックボックスの性質を解明する上で、ネットワークの反転は重要な役割を担っている。
本稿では,ネットワークの構造をキャプチャするCNF式に符号化することで,訓練されたBNNを逆転させる新しい手法を提案する。
論文 参考訳(メタデータ) (2024-02-19T09:39:54Z) - Manipulating Feature Visualizations with Gradient Slingshots [53.94925202421929]
特徴可視化(FV)は、ディープニューラルネットワーク(DNN)で学んだ概念を解釈するための広く使われている手法である。
本稿では,モデルアーキテクチャを変更したり,性能を著しく劣化させたりすることなくFVの操作を可能にする新しい手法,Gradient Slingshotsを提案する。
論文 参考訳(メタデータ) (2024-01-11T18:57:17Z) - Tensor Networks for Explainable Machine Learning in Cybersecurity [0.0]
マトリックス製品状態(MPS)に基づく教師なしクラスタリングアルゴリズムを開発した。
我々の調査は、MPSがオートエンコーダやGANといった従来のディープラーニングモデルと性能的に競合していることを証明している。
提案手法は,機能的確率,フォン・ノイマン・エントロピー,相互情報の抽出を自然に促進する。
論文 参考訳(メタデータ) (2023-12-29T22:35:45Z) - Representation Engineering: A Top-Down Approach to AI Transparency [130.33981757928166]
表現工学の新たな領域(RepE)を特定し,特徴付ける
RepEは、神経細胞や回路ではなく、人口レベルの表現を解析の中心に置く。
これらの手法が、広範囲の安全関連問題に対してどのようにトラクションを提供するかを紹介する。
論文 参考訳(メタデータ) (2023-10-02T17:59:07Z) - Comparative Analysis of Interval Reachability for Robust Implicit and
Feedforward Neural Networks [64.23331120621118]
我々は、暗黙的ニューラルネットワーク(INN)の堅牢性を保証するために、区間到達可能性分析を用いる。
INNは暗黙の方程式をレイヤとして使用する暗黙の学習モデルのクラスである。
提案手法は, INNに最先端の区間境界伝搬法を適用するよりも, 少なくとも, 一般的には, 有効であることを示す。
論文 参考訳(メタデータ) (2022-04-01T03:31:27Z) - A Lightweight, Efficient and Explainable-by-Design Convolutional Neural
Network for Internet Traffic Classification [9.365794791156972]
本稿では、インターネットトラフィック分類のための新しい軽量・効率的・eXplainable-by-design畳み込みニューラルネットワーク(LEXNet)を提案する。
LEXNetは(軽量で効率の良い目的のために)新しい残留ブロックと(説明可能性のために)プロトタイプ層に依存している。
商用グレードのデータセットに基づいて、LEXNetは最先端のニューラルネットワークと同じ精度を維持することに成功した。
論文 参考訳(メタデータ) (2022-02-11T10:21:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。