論文の概要: Internalizing Self-Consistency in Language Models: Multi-Agent Consensus Alignment
- arxiv url: http://arxiv.org/abs/2509.15172v2
- Date: Tue, 30 Sep 2025 19:57:55 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-02 17:16:29.738926
- Title: Internalizing Self-Consistency in Language Models: Multi-Agent Consensus Alignment
- Title(参考訳): 言語モデルにおける自己整合性の内部化:マルチエージェント・コンセンサスアライメント
- Authors: Ankur Samanta, Akshayaa Magesh, Youliang Yu, Runzhe Wu, Ayush Jain, Daniel Jiang, Boris Vidolov, Paul Sajda, Yonathan Efroni, Kaveh Hassani,
- Abstract要約: 言語モデル(LM)は矛盾する推論子であり、しばしば同じプロンプトに対する矛盾した応答を生成する。
適切に整合した推論モデルの本質的な性質として自己整合性を定式化し、MACA(Multi-Agent Consensus Alignment)を導入する。
MACAは、エージェントが自分自身をより決定的かつ簡潔に教えることを可能にし、外部の監督なしにマルチエージェント設定におけるピアインサイトをより活用する。
- 参考スコア(独自算出の注目度): 22.305033366660187
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Language Models (LMs) are inconsistent reasoners, often generating contradictory responses to identical prompts. While inference-time methods can mitigate these inconsistencies, they fail to address the core problem: LMs struggle to reliably select reasoning pathways leading to consistent outcomes under exploratory sampling. To address this, we formalize self-consistency as an intrinsic property of well-aligned reasoning models and introduce Multi-Agent Consensus Alignment (MACA), a reinforcement learning framework that post-trains models to favor reasoning trajectories aligned with their internal consensus using majority/minority outcomes from multi-agent debate. These trajectories emerge from deliberative exchanges where agents ground reasoning in peer arguments, not just aggregation of independent attempts, creating richer consensus signals than single-round majority voting. MACA enables agents to teach themselves to be more decisive and concise, and better leverage peer insights in multi-agent settings without external supervision, driving substantial improvements across self-consistency (+27.6% on GSM8K), single-agent reasoning (+23.7% on MATH), sampling-based inference (+22.4% Pass@20 on MATH), and multi-agent ensemble decision-making (+42.7% on MathQA). These findings, coupled with strong generalization to unseen benchmarks (+16.3% on GPQA, +11.6% on CommonsenseQA), demonstrate robust self-alignment that more reliably unlocks latent reasoning potential of language models.
- Abstract(参考訳): 言語モデル(LM)は矛盾する推論子であり、しばしば同じプロンプトに対する矛盾した応答を生成する。
推論時間法はこれらの矛盾を緩和するが、中核的な問題に対処することができない: LMは探索サンプリングの下で一貫した結果をもたらす推論経路を確実に選択するのに苦労する。
そこで本研究では, 自己整合性を, 適切に整合した推論モデルの本質的な性質として定式化し, マルチエージェント・コンセンサス・アライメント(MACA)を導入した。
これらの軌道は、独立した試みの集合だけでなく、エージェントが単独の過半数投票よりもリッチなコンセンサス信号を生成するような議論的な交換から生まれる。
MACAにより、エージェントはより決定的かつ簡潔で、外部の監督なしにマルチエージェント設定におけるピアインサイトをより活用し、自己整合性(GSM8Kでは+27.6%)、シングルエージェント推論(MATHでは+23.7%)、サンプリングベース推論(MATHでは+22.4%)、マルチエージェントアンサンブル意思決定(MathQAでは+42.7%)で大幅に改善される。
これらの発見とGPQAで+16.3%、CommonsenseQAで+11.6%)の強い一般化は、言語モデルの潜在推論可能性をより確実に解き放つ堅牢な自己アライメントを示す。
関連論文リスト
- Certainty-Guided Reasoning in Large Language Models: A Dynamic Thinking Budget Approach [0.15749416770494704]
CGR(Certainty-Guided Reasoning)はトークン使用量を削減するとともに,ベースライン精度を向上させる。
CGRは、確実なしきい値と効率の間の調整可能なトレードオフによって、数百万のトークンを集約的に排除することができる。
信頼性を推論プロセスに統合することにより、CGRは大きな推論言語モデルをより適応的で信頼性があり、リソース効率が良いものにする。
論文 参考訳(メタデータ) (2025-09-09T14:57:15Z) - Retrieval-Augmented Generation with Conflicting Evidence [57.66282463340297]
大規模言語モデル (LLM) エージェントは、応答の事実性を改善するために、検索強化世代 (RAG) をますます採用している。
実際には、これらのシステムは曖昧なユーザクエリを処理し、複数のソースからの情報に衝突する可能性がある。
RAMDocs(Retrieval with Ambiguity and Misinformation in Documents)は,ユーザクエリのエビデンスを矛盾させるような,複雑で現実的なシナリオをシミュレートする新しいデータセットである。
論文 参考訳(メタデータ) (2025-04-17T16:46:11Z) - Collective Reasoning Among LLMs: A Framework for Answer Validation Without Ground Truth [0.0]
いくつかの先進的な大規模言語モデルが複雑で博士レベルの確率問題を生成・解き出す新しいアプローチを導入する。
本研究は, 多様なモデル間の合意が, アウトプットの信頼性を如何に示すかに焦点を当てる。
論文 参考訳(メタデータ) (2025-02-28T06:20:52Z) - DebUnc: Improving Large Language Model Agent Communication With Uncertainty Metrics [52.242449026151846]
大規模言語モデル(LLM)の精度向上のためのマルチエージェント論争が紹介されている。
エージェントの信頼性を評価するために不確実性指標を用いた議論フレームワークであるDebUncを提案する。
論文 参考訳(メタデータ) (2024-07-08T22:15:01Z) - ReConcile: Round-Table Conference Improves Reasoning via Consensus among Diverse LLMs [61.07130026622437]
大規模言語モデル(LLM)は、まだ自然言語推論タスクに苦戦している。
心の社会に動機づけられて、我々はReConcileを提案する。
LLMエージェント間のラウンドテーブル会議として設計されたマルチモデルマルチエージェントフレームワーク。
論文 参考訳(メタデータ) (2023-09-22T17:12:45Z) - On the Complexity of Multi-Agent Decision Making: From Learning in Games
to Partial Monitoring [105.13668993076801]
マルチエージェント強化学習(MARL)理論における中心的な問題は、構造条件やアルゴリズムの原理がサンプル効率の学習保証につながるかを理解することである。
本稿では,複数のエージェントを用いた対話型意思決定のための一般的な枠組みとして,この問題について考察する。
マルチエージェント意思決定における統計的複雑性を特徴付けることは、単一エージェント決定の統計的複雑性を特徴付けることと等価であることを示す。
論文 参考訳(メタデータ) (2023-05-01T06:46:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。