論文の概要: SGMAGNet: A Baseline Model for 3D Cloud Phase Structure Reconstruction on a New Passive Active Satellite Benchmark
- arxiv url: http://arxiv.org/abs/2509.15706v1
- Date: Fri, 19 Sep 2025 07:29:23 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-22 18:18:11.053017
- Title: SGMAGNet: A Baseline Model for 3D Cloud Phase Structure Reconstruction on a New Passive Active Satellite Benchmark
- Title(参考訳): SGMAGNet:新しいパッシブアクティブ衛星ベンチマークによる3次元雲相構造再構築のためのベースラインモデル
- Authors: Chi Yang, Fu Wang, Xiaofei Yang, Hao Huang, Weijia Cao, Xiaowen Chu,
- Abstract要約: 本稿では,衛星観測を詳細な3次元雲相構造に変換するためのベンチマークデータセットを提案する。
我々はSGMAGNetをメインモデルとして採用し、いくつかのベースラインアーキテクチャと比較する。
その結果,SGMAGNetは雲相再構成において優れた性能を発揮することが示された。
- 参考スコア(独自算出の注目度): 17.3424418972935
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Cloud phase profiles are critical for numerical weather prediction (NWP), as they directly affect radiative transfer and precipitation processes. In this study, we present a benchmark dataset and a baseline framework for transforming multimodal satellite observations into detailed 3D cloud phase structures, aiming toward operational cloud phase profile retrieval and future integration with NWP systems to improve cloud microphysics parameterization. The multimodal observations consist of (1) high--spatiotemporal--resolution, multi-band visible (VIS) and thermal infrared (TIR) imagery from geostationary satellites, and (2) accurate vertical cloud phase profiles from spaceborne lidar (CALIOP\slash CALIPSO) and radar (CPR\slash CloudSat). The dataset consists of synchronized image--profile pairs across diverse cloud regimes, defining a supervised learning task: given VIS/TIR patches, predict the corresponding 3D cloud phase structure. We adopt SGMAGNet as the main model and compare it with several baseline architectures, including UNet variants and SegNet, all designed to capture multi-scale spatial patterns. Model performance is evaluated using standard classification metrics, including Precision, Recall, F1-score, and IoU. The results demonstrate that SGMAGNet achieves superior performance in cloud phase reconstruction, particularly in complex multi-layer and boundary transition regions. Quantitatively, SGMAGNet attains a Precision of 0.922, Recall of 0.858, F1-score of 0.763, and an IoU of 0.617, significantly outperforming all baselines across these key metrics.
- Abstract(参考訳): 雲相プロファイルは、放射移動と降水過程に直接影響するため、数値気象予報(NWP)において重要である。
本研究では,マルチモーダル衛星観測を詳細な3次元雲相構造に変換するためのベンチマークデータセットとベースラインフレームワークを提案する。
多モード観測は,(1)静止衛星からの高分解能・高分解能・高帯域可視(VIS)・熱赤外(TIR)画像,(2)衛星搭載ライダー(CALIOP\slash CALIPSO)とレーダー(CPR\slash CloudSat)からの正確な垂直雲相プロファイルからなる。
データセットは、さまざまなクラウドレシエーション間で同期されたイメージ-注目のペアで構成され、教師付き学習タスクを定義する。
我々はSGMAGNetをメインモデルとして採用し、UNetやSegNetなどいくつかのベースラインアーキテクチャと比較した。
モデルパフォーマンスは、Precision、Recall、F1-score、IoUなど、標準的な分類基準を使用して評価される。
以上の結果から,SGMAGNetは雲相再構成において,特に複雑な多層・境界遷移領域において優れた性能を発揮することが示された。
定量的には、SGMAGNetは0.922の精度、0.858のリコール、0.763のF1スコア、0.617のIoUを達成し、これらの主要な指標の全てのベースラインを著しく上回っている。
関連論文リスト
- Cross3DReg: Towards a Large-scale Real-world Cross-source Point Cloud Registration Benchmark [57.42211080221526]
異なるセンサーからのポイントクラウドデータを整列することを目的とした、クロスソースのポイントクラウド登録は、3Dビジョンの基本的なタスクである。
ディープ登録モデルをトレーニングするための大規模な実世界のデータセットが公開されていないことや、複数のセンサーによってキャプチャされたポイントクラウド固有の違いが課題となっている。
現在世界最大のマルチモーダル・クロスソース・クラウド登録データセットであるCross3DRegを構築している。
クロスソース・ポイント・クラウド機能の整合性を高めるために,ビジュアル・ジオメトリ・アテンションガイド付きマッチングモジュールを提案する。
論文 参考訳(メタデータ) (2025-09-08T09:01:13Z) - Adapting Vision Foundation Models for Robust Cloud Segmentation in Remote Sensing Images [22.054023867495722]
クラウドセグメンテーションはリモートセンシング画像解釈において重要な課題である。
本稿では,クラウドセグメンテーションの精度とロバスト性を高めるために,Cloud-Adapterと呼ばれるパラメータ効率適応手法を提案する。
論文 参考訳(メタデータ) (2024-11-20T08:37:39Z) - PGCS: Physical Law embedded Generative Cloud Synthesis in Remote Sensing Images [9.655563155560658]
物理法則組み込みクラウド合成法 (PGCS) は, 実データを改善するために, 多様な現実的なクラウド画像を生成するために提案されている。
2つの雲補正法がPGCSから開発され、雲補正作業における最先端手法と比較して優れた性能を示す。
論文 参考訳(メタデータ) (2024-10-22T12:36:03Z) - Point Cloud Mamba: Point Cloud Learning via State Space Model [73.7454734756626]
我々は,マンバをベースとしたポイントクラウド法が,トランスフォーマや多層パーセプトロン(MLP)に基づく従来手法よりも優れていることを示す。
特に,マルチ層パーセプトロン(MLP)を用いて,マンバをベースとした点雲法が従来手法より優れていることを示す。
Point Cloud Mambaは、最先端(SOTA)のポイントベースメソッドであるPointNeXtを超え、ScanNN、ModelNet40、ShapeNetPart、S3DISデータセット上での新たなSOTAパフォーマンスを達成する。
論文 参考訳(メタデータ) (2024-03-01T18:59:03Z) - ModelNet-O: A Large-Scale Synthetic Dataset for Occlusion-Aware Point
Cloud Classification [28.05358017259757]
本論文では,123,041サンプルの大規模合成データセットであるModelNet-Oを提案する。
ModelNet-Oは、モノクロカメラからのスキャンによる自己閉塞で現実世界の点雲をエミュレートする。
本稿では,PointMLSと呼ばれるロバストポイントクラウド処理手法を提案する。
論文 参考訳(メタデータ) (2024-01-16T08:54:21Z) - StarNet: Style-Aware 3D Point Cloud Generation [82.30389817015877]
StarNetは、マッピングネットワークを使用して高忠実度および3Dポイントクラウドを再構築し、生成することができる。
我々のフレームワークは、クラウドの再構築と生成タスクにおいて、様々なメトリクスで同等の最先端のパフォーマンスを達成します。
論文 参考訳(メタデータ) (2023-03-28T08:21:44Z) - Learning Scene Dynamics from Point Cloud Sequences [8.163697683448811]
本稿では,一列に1組の点雲に対して3次元のシーンフローを予測することを目的とした,時間的シーンフロー推定(SSFE)という新たな問題を提案する。
本稿では,SPCM-Netアーキテクチャを導入し,近隣の点群間のマルチスケール相関を計算してこの問題を解決する。
我々は,この手法を逐次点雲予測のために効果的に修正できることを実証した。
論文 参考訳(メタデータ) (2021-11-16T19:52:46Z) - M3DeTR: Multi-representation, Multi-scale, Mutual-relation 3D Object
Detection with Transformers [78.48081972698888]
M3DeTRは、マルチスケールのフィーチャーピラミッドに基づいて、異なるポイントクラウド表現と異なる機能スケールを組み合わせたものです。
M3DeTRは、複数のポイントクラウド表現、機能スケール、およびトランスを使用してポイントクラウド間の相互関係を同時にモデル化する最初のアプローチです。
論文 参考訳(メタデータ) (2021-04-24T06:48:23Z) - Pseudo-LiDAR Point Cloud Interpolation Based on 3D Motion Representation
and Spatial Supervision [68.35777836993212]
我々はPseudo-LiDAR点雲ネットワークを提案し、時間的および空間的に高品質な点雲列を生成する。
点雲間のシーンフローを活用することにより,提案ネットワークは3次元空間運動関係のより正確な表現を学習することができる。
論文 参考訳(メタデータ) (2020-06-20T03:11:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。