論文の概要: PGCS: Physical Law embedded Generative Cloud Synthesis in Remote Sensing Images
- arxiv url: http://arxiv.org/abs/2410.16955v1
- Date: Tue, 22 Oct 2024 12:36:03 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-23 14:27:38.883298
- Title: PGCS: Physical Law embedded Generative Cloud Synthesis in Remote Sensing Images
- Title(参考訳): PGCS: リモートセンシング画像における物理法則組み込み生成クラウド合成
- Authors: Liying Xu, Huifang Li, Huanfeng Shen, Mingyang Lei, Tao Jiang,
- Abstract要約: 物理法則組み込みクラウド合成法 (PGCS) は, 実データを改善するために, 多様な現実的なクラウド画像を生成するために提案されている。
2つの雲補正法がPGCSから開発され、雲補正作業における最先端手法と比較して優れた性能を示す。
- 参考スコア(独自算出の注目度): 9.655563155560658
- License:
- Abstract: Data quantity and quality are both critical for information extraction and analyzation in remote sensing. However, the current remote sensing datasets often fail to meet these two requirements, for which cloud is a primary factor degrading the data quantity and quality. This limitation affects the precision of results in remote sensing application, particularly those derived from data-driven techniques. In this paper, a physical law embedded generative cloud synthesis method (PGCS) is proposed to generate diverse realistic cloud images to enhance real data and promote the development of algorithms for subsequent tasks, such as cloud correction, cloud detection, and data augmentation for classification, recognition, and segmentation. The PGCS method involves two key phases: spatial synthesis and spectral synthesis. In the spatial synthesis phase, a style-based generative adversarial network is utilized to simulate the spatial characteristics, generating an infinite number of single-channel clouds. In the spectral synthesis phase, the atmospheric scattering law is embedded through a local statistics and global fitting method, converting the single-channel clouds into multi-spectral clouds. The experimental results demonstrate that PGCS achieves a high accuracy in both phases and performs better than three other existing cloud synthesis methods. Two cloud correction methods are developed from PGCS and exhibits a superior performance compared to state-of-the-art methods in the cloud correction task. Furthermore, the application of PGCS with data from various sensors was investigated and successfully extended. Code will be provided at https://github.com/Liying-Xu/PGCS.
- Abstract(参考訳): データ量と品質は、リモートセンシングにおける情報抽出と分析に重要である。
しかしながら、現在のリモートセンシングデータセットは、これらの2つの要件を満たすことができないことが多い。
この制限は、リモートセンシングアプリケーション、特にデータ駆動技術に由来する結果の精度に影響を与える。
本稿では,クラウド修正やクラウド検出,分類,認識,セグメンテーションのためのデータ拡張など,その後のタスクのためのアルゴリズムの開発を促進するために,多様な現実的なクラウド画像を生成する物理法組込みクラウド合成法(PGCS)を提案する。
PGCS法は空間合成とスペクトル合成の2つの重要な位相を含む。
空間合成フェーズでは、スタイルベースの生成対向ネットワークを用いて空間特性をシミュレートし、無限個の単一チャネル雲を生成する。
スペクトル合成段階において、大気散乱法則は局所統計学および大域的適合法により埋め込み、単一チャネル雲をマルチスペクトル雲に変換する。
実験の結果,PGCSは両相とも高精度であり,既存の3つのクラウド合成法よりも優れていることがわかった。
2つの雲補正法がPGCSから開発され、雲補正作業における最先端手法と比較して優れた性能を示す。
さらに, PGCSを各種センサのデータに適用し, 拡張に成功した。
コードはhttps://github.com/Liying-Xu/PGCSで提供される。
関連論文リスト
- Parameter-Efficient Fine-Tuning in Spectral Domain for Point Cloud Learning [49.91297276176978]
私たちは小説を提案します。
ポイントGST (Point GST) と呼ばれる点雲の効率的な微細調整法。
ポイントGSTは事前トレーニングされたモデルを凍結し、スペクトル領域のパラメータを微調整するためのトレーニング可能なポイントクラウドスペクトルアダプタ(PCSA)を導入する。
挑戦的なポイントクラウドデータセットに関する大規模な実験は、ポイントGSTが完全に微調整されたデータセットを上回るだけでなく、トレーニング可能なパラメータを大幅に削減することを示した。
論文 参考訳(メタデータ) (2024-10-10T17:00:04Z) - Tackling fluffy clouds: field boundaries detection using time series of S2 and/or S1 imagery [1.0251998687197121]
本研究では,Sentinel-2 (S2) とSentinel-1 (S1) 画像からの時系列データを利用して,多様な雲条件下での性能向上を行う手法を提案する。
2つのモデルが提案されている: PTAViT3DはS2またはS1データを独立に処理し、PTAViT3D-CAは両方のデータセットを融合して精度を高める。
以上の結果から,S1モデルでは,部分的(S2やS2,S1データ融合)や密集クラウドカバー(S1)においても,S2画像に匹敵する性能を提供する。
論文 参考訳(メタデータ) (2024-09-20T15:10:04Z) - SPAC: Sampling-based Progressive Attribute Compression for Dense Point Clouds [51.313922535437726]
本研究では,高密度点雲のエンドツーエンド圧縮法を提案する。
提案手法は,周波数サンプリングモジュール,適応スケール特徴抽出モジュール,幾何支援モジュール,大域的ハイパープライアエントロピーモデルを組み合わせた。
論文 参考訳(メタデータ) (2024-09-16T13:59:43Z) - Point Cloud Compression with Implicit Neural Representations: A Unified Framework [54.119415852585306]
我々は幾何学と属性の両方を扱える先駆的なクラウド圧縮フレームワークを提案する。
本フレームワークでは,2つの座標ベースニューラルネットワークを用いて,voxelized point cloudを暗黙的に表現する。
本手法は,既存の学習手法と比較して,高い普遍性を示す。
論文 参考訳(メタデータ) (2024-05-19T09:19:40Z) - CLiSA: A Hierarchical Hybrid Transformer Model using Orthogonal Cross
Attention for Satellite Image Cloud Segmentation [5.178465447325005]
ディープラーニングアルゴリズムは画像セグメンテーション問題を解決するための有望なアプローチとして登場してきた。
本稿では,Lipschitz Stable Attention NetworkによるCLiSA - Cloudセグメンテーションという,効果的なクラウドマスク生成のためのディープラーニングモデルを提案する。
Landsat-8, Sentinel-2, Cartosat-2sを含む複数の衛星画像データセットの質的および定量的な結果を示す。
論文 参考訳(メタデータ) (2023-11-29T09:31:31Z) - Point Cloud Pre-training with Diffusion Models [62.12279263217138]
我々は、ポイントクラウド拡散事前学習(PointDif)と呼ばれる新しい事前学習手法を提案する。
PointDifは、分類、セグメンテーション、検出など、さまざまな下流タスクのために、さまざまな現実世界のデータセット間で大幅に改善されている。
論文 参考訳(メタデータ) (2023-11-25T08:10:05Z) - Creating and Leveraging a Synthetic Dataset of Cloud Optical Thickness Measures for Cloud Detection in MSI [3.4764766275808583]
雲の形成は、しばしば地球の地表を観測する光学衛星による不明瞭な観測である。
雲の光学的厚さ推定のための新しい合成データセットを提案する。
信頼性と汎用性を備えたクラウドマスクを実データで取得するために活用する。
論文 参考訳(メタデータ) (2023-11-23T14:28:28Z) - Compositional Semantic Mix for Domain Adaptation in Point Cloud
Segmentation [65.78246406460305]
合成意味混合は、ポイントクラウドセグメンテーションのための最初の教師なし領域適応技術である。
本稿では、ソースドメイン(例えば合成)からの点雲とターゲットドメイン(例えば実世界)からの点雲を同時に処理できる2分岐対称ネットワークアーキテクチャを提案する。
論文 参考訳(メタデータ) (2023-08-28T14:43:36Z) - Point Cloud Registration for LiDAR and Photogrammetric Data: a Critical
Synthesis and Performance Analysis on Classic and Deep Learning Algorithms [7.874736360019618]
本稿では,SOTA(State-of-the-art)ポイントクラウド登録手法について概観する。
本研究では,屋内から衛星まで多様な点雲データを用いて,これらの手法を解析・評価する。
古典的な手作り、ディープラーニングに基づく特徴対応、堅牢なC2C手法を含む10以上の手法が試験された。
論文 参考訳(メタデータ) (2023-02-14T16:52:26Z) - Data-driven Cloud Clustering via a Rotationally Invariant Autoencoder [10.660968055962325]
自動回転不変クラウドクラスタリング(RICC)法について述べる。
大規模なデータセット内のクラウドイメージを教師なしの方法で整理する。
その結果、クラウドクラスタはクラウド物理の有意義な側面を捉えていることが示唆された。
論文 参考訳(メタデータ) (2021-03-08T16:45:14Z) - Recent Developments Combining Ensemble Smoother and Deep Generative
Networks for Facies History Matching [58.720142291102135]
本研究は、ファシズムモデルのための連続パラメータ化を構築するためのオートエンコーダネットワークの利用に焦点を当てる。
本稿では,VAE,GAN,Wasserstein GAN,変分自動符号化GAN,サイクルGANの主成分分析(PCA),転送スタイルネットワークのPCA,スタイル損失のVAEの7種類の定式化をベンチマークする。
論文 参考訳(メタデータ) (2020-05-08T21:32:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。