論文の概要: Efficient Long-Tail Learning in Latent Space by sampling Synthetic Data
- arxiv url: http://arxiv.org/abs/2509.15859v1
- Date: Fri, 19 Sep 2025 10:52:31 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-22 18:18:11.133557
- Title: Efficient Long-Tail Learning in Latent Space by sampling Synthetic Data
- Title(参考訳): 合成データのサンプリングによる潜時空間における効率的な長距離学習
- Authors: Nakul Sharma,
- Abstract要約: 不均衡な分類データセットは、機械学習に重大な課題をもたらす。
本稿では,視覚基礎モデルのリッチなセマンティック潜在空間を利用して合成データを生成し,単純な線形分類器を訓練する新しいフレームワークを提案する。
提案手法は,CIFAR-100-LTベンチマークの最先端性を新たに設定し,Places-LTベンチマークで高い性能を示す。
- 参考スコア(独自算出の注目度): 1.9290392443571385
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Imbalanced classification datasets pose significant challenges in machine learning, often leading to biased models that perform poorly on underrepresented classes. With the rise of foundation models, recent research has focused on the full, partial, and parameter-efficient fine-tuning of these models to deal with long-tail classification. Despite the impressive performance of these works on the benchmark datasets, they still fail to close the gap with the networks trained using the balanced datasets and still require substantial computational resources, even for relatively smaller datasets. Underscoring the importance of computational efficiency and simplicity, in this work we propose a novel framework that leverages the rich semantic latent space of Vision Foundation Models to generate synthetic data and train a simple linear classifier using a mixture of real and synthetic data for long-tail classification. The computational efficiency gain arises from the number of trainable parameters that are reduced to just the number of parameters in the linear model. Our method sets a new state-of-the-art for the CIFAR-100-LT benchmark and demonstrates strong performance on the Places-LT benchmark, highlighting the effectiveness and adaptability of our simple and effective approach.
- Abstract(参考訳): 不均衡な分類データセットは、機械学習において重大な課題を生じさせ、しばしば、未表現のクラスで不十分なパフォーマンスを示すバイアスのあるモデルに繋がる。
基礎モデルの台頭とともに、最近の研究は、長い尾の分類を扱うために、これらのモデルの完全な、部分的、パラメータ効率の高い微調整に焦点を当てている。
ベンチマークデータセットにおけるこれらの作業の素晴らしいパフォーマンスにもかかわらず、バランスの取れたデータセットを使用してトレーニングされたネットワークとのギャップを埋めることができず、比較的小さなデータセットであっても、かなりの計算リソースを必要とする。
計算効率と単純さの重要性を考察し,視覚基礎モデルのリッチな意味潜在空間を活用して,合成データを生成し,実データと合成データを混合した長テール分類法を用いて簡単な線形分類器を訓練する新しいフレームワークを提案する。
計算効率の向上は、線形モデルにおけるパラメータの数に還元される訓練可能なパラメータの数から生じる。
提案手法は,CIFAR-100-LTベンチマークの最先端を新たに設定し,Places-LTベンチマークで高い性能を示し,単純かつ効果的なアプローチの有効性と適応性を強調した。
関連論文リスト
- SPaRFT: Self-Paced Reinforcement Fine-Tuning for Large Language Models [51.74498855100541]
大規模言語モデル(LLM)は、強化学習(RL)による微調整時に強い推論能力を示す。
トレーニング対象のモデルの性能に基づいて,効率的な学習を可能にする自己評価学習フレームワークである textbfSPaRFT を提案する。
論文 参考訳(メタデータ) (2025-08-07T03:50:48Z) - Forewarned is Forearmed: Leveraging LLMs for Data Synthesis through Failure-Inducing Exploration [90.41908331897639]
大規模言語モデル(LLM)は、多種多様な高品質なタスク特化データのトレーニングの恩恵を受けている。
本稿では,効果的なトレーニングサンプルを自動生成する新しい手法であるReverseGenを提案する。
論文 参考訳(メタデータ) (2024-10-22T06:43:28Z) - Efficacy of Synthetic Data as a Benchmark [3.2968976262860408]
大規模言語モデル(LLM)による合成データ生成の有効性について検討する。
実験の結果, 単純なタスクに対して, 合成データは様々な手法の性能を効果的に捉えることができるが, 名前付きエンティティ認識のような複雑なタスクでは不十分であることがわかった。
我々は、ベンチマークデータの生成とタスクの実行の両方に同じLLMを使用した場合のバイアスを評価するバイアス係数と呼ばれる新しい指標を提案する。
論文 参考訳(メタデータ) (2024-09-18T13:20:23Z) - Accelerating Large Language Model Pretraining via LFR Pedagogy: Learn, Focus, and Review [50.78587571704713]
Learn-Focus-Review(LFR)は、モデルの学習進捗に適応する動的トレーニングアプローチである。
LFRは、データブロック(トークンのシーケンス)にわたるモデルの学習パフォーマンスを追跡し、データセットの困難な領域を再検討する。
フルデータセットでトレーニングされたベースラインモデルと比較して、LFRは一貫して低いパープレキシティと高い精度を達成した。
論文 参考訳(メタデータ) (2024-09-10T00:59:18Z) - Generative Expansion of Small Datasets: An Expansive Graph Approach [13.053285552524052]
最小限のサンプルから大規模で情報豊富なデータセットを生成する拡張合成モデルを提案する。
自己アテンション層と最適なトランスポートを持つオートエンコーダは、分散一貫性を洗練させる。
結果は同等のパフォーマンスを示し、モデルがトレーニングデータを効果的に増強する可能性を示している。
論文 参考訳(メタデータ) (2024-06-25T02:59:02Z) - Unveiling the Flaws: Exploring Imperfections in Synthetic Data and Mitigation Strategies for Large Language Models [89.88010750772413]
大規模言語モデル(LLM)の学習における高品質なデータ不足問題に対する解決法として,合成データを提案する。
我々の研究は、Q-A(Q-A)ペア、一般的な合成データに関連するこれらの特定の欠陥を掘り下げ、これらの欠陥を軽減するための未学習技術に基づく方法を提案する。
我々の研究は、より堅牢で効率的なLLMトレーニングを促進することを目的として、合成データの効果的な利用に関する重要な洞察を得た。
論文 参考訳(メタデータ) (2024-06-18T08:38:59Z) - EPIC: Effective Prompting for Imbalanced-Class Data Synthesis in Tabular Data Classification via Large Language Models [39.347666307218006]
大規模言語モデル (LLM) は、多様なアプリケーションにまたがるテキスト内学習能力を示す。
バランスの取れたデータサンプルと一貫したフォーマットと独自の変数マッピングを併用した新しい手法であるEPICを導入し、不均衡なデータセットであっても、全てのクラスで正確な合成データを生成するのにLLMをガイドする。
論文 参考訳(メタデータ) (2024-04-15T17:49:16Z) - Federated Learning with Projected Trajectory Regularization [65.6266768678291]
フェデレーション学習は、ローカルデータを共有せずに、分散クライアントから機械学習モデルの共同トレーニングを可能にする。
連合学習における重要な課題の1つは、クライアントにまたがる識別できない分散データを扱うことである。
本稿では,データ問題に対処するための予測軌道正則化(FedPTR)を備えた新しいフェデレーション学習フレームワークを提案する。
論文 参考訳(メタデータ) (2023-12-22T02:12:08Z) - Efficiently Robustify Pre-trained Models [18.392732966487582]
大規模モデルの現実的な設定に対する堅牢性は、いまだ探索されていないトピックである。
まず、異なる摂動とデータセットの下でこれらのモデルのパフォーマンスをベンチマークします。
続いて、大規模ネットワークにおいて、モデルファインチューニングに基づく既存のロバスト化スキームが拡張性に欠ける可能性について論じる。
論文 参考訳(メタデータ) (2023-09-14T08:07:49Z) - Improved Distribution Matching for Dataset Condensation [91.55972945798531]
本稿では,分布マッチングに基づく新しいデータセット凝縮法を提案する。
提案手法は,計算資源の少ない従来の最適化指向手法よりも優れている。
論文 参考訳(メタデータ) (2023-07-19T04:07:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。