論文の概要: DeepMech: A Machine Learning Framework for Chemical Reaction Mechanism Prediction
- arxiv url: http://arxiv.org/abs/2509.15872v1
- Date: Fri, 19 Sep 2025 11:14:46 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-22 18:18:11.13844
- Title: DeepMech: A Machine Learning Framework for Chemical Reaction Mechanism Prediction
- Title(参考訳): DeepMech: 化学反応メカニズム予測のための機械学習フレームワーク
- Authors: Manajit Das, Ajnabiul Hoque, Mayank Baranwal, Raghavan B. Sunoj,
- Abstract要約: 本稿では,化学反応機構を生成するための解釈可能なグラフベースディープラーニングフレームワークであるDeepMechを提案する。
DeepMechは、初歩予測において98.98 +/-0.12%の精度と完全なCRMタスクにおいて95.94 +/-0.21%の精度を達成する。
- 参考スコア(独自算出の注目度): 2.15242029196761
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Prediction of complete step-by-step chemical reaction mechanisms (CRMs) remains a major challenge. Whereas the traditional approaches in CRM tasks rely on expert-driven experiments or costly quantum chemical computations, contemporary deep learning (DL) alternatives ignore key intermediates and mechanistic steps and often suffer from hallucinations. We present DeepMech, an interpretable graph-based DL framework employing atom- and bond-level attention, guided by generalized templates of mechanistic operations (TMOps), to generate CRMs. Trained on our curated ReactMech dataset (~30K CRMs with 100K atom-mapped and mass-balanced elementary steps), DeepMech achieves 98.98+/-0.12% accuracy in predicting elementary steps and 95.94+/-0.21% in complete CRM tasks, besides maintaining high fidelity even in out-of-distribution scenarios as well as in predicting side and/or byproducts. Extension to multistep CRMs relevant to prebiotic chemistry, demonstrates the ability of DeepMech in effectively reconstructing pathways from simple primordial substrates to complex biomolecules such as serine and aldopentose. Attention analysis identifies reactive atoms/bonds in line with chemical intuition, rendering our model interpretable and suitable for reaction design.
- Abstract(参考訳): 完全な段階的化学反応機構(CRM)の予測は依然として大きな課題である。
CRMタスクの伝統的なアプローチは専門家主導の実験や高価な量子化学計算に依存しているのに対し、現代のディープラーニング(DL)代替案は重要な中間と機械的なステップを無視し、幻覚に悩まされることが多い。
本稿では,アトム・アンド・ボンド・アテンションを用いた解釈可能なグラフベースDLフレームワークであるDeepMechについて紹介する。
キュレートされたReactMechデータセット(100Kの原子マップと質量バランスの基本的なステップを持つ約30KのCRM)に基づいて、DeepMechは、初歩の予測において98.98+/-0.12%の精度、完全なCRMタスクでは95.94+/-0.21%の精度を達成します。
生物前化学に関連する多段階CRMへの拡張は、単純な原始基質からセリンやアルドペントースのような複雑な生体分子への経路を効果的に再構築するDeepMechの能力を示す。
アテンション分析は化学直観と一致した反応原子/結合を同定し、我々のモデルを解釈可能で反応設計に適したものにする。
関連論文リスト
- A Multi-Agent System Enables Versatile Information Extraction from the Chemical Literature [8.306442315850878]
我々は,堅牢かつ自動化された化学情報抽出のためのマルチモーダル大規模言語モデル (MLLM) ベースのマルチエージェントシステムを開発した。
文献から得られた高精細なマルチモーダル化学反応画像のベンチマークデータセットにおいて,本システムは80.8%のF1スコアを達成した。
論文 参考訳(メタデータ) (2025-07-27T11:16:57Z) - ChemActor: Enhancing Automated Extraction of Chemical Synthesis Actions with LLM-Generated Data [53.78763789036172]
ケミカルエグゼキュータとして完全微調整された大規模言語モデル(LLM)であるChemActorを紹介し,非構造化実験手順と構造化動作シーケンスを変換する。
このフレームワークは、分散分散に基づくデータ選択モジュールと汎用LLMを統合し、単一の分子入力からマシン実行可能なアクションを生成する。
反応記述(R2D)と記述記述処理(D2A)のタスクの実験により、ChemActorは最先端のパフォーマンスを達成し、ベースラインモデルよりも10%高い性能を示した。
論文 参考訳(メタデータ) (2025-06-30T05:11:19Z) - Interpretable Deep Learning for Polar Mechanistic Reaction Prediction [43.95903801494905]
PMechRP(Polar Mechanistic Reaction Predictor)は,PMechDBデータセット上で機械学習モデルをトレーニングするシステムである。
私たちは、トランスフォーマーベース、グラフベース、および2段階のシアムアーキテクチャを含む、さまざまな機械学習モデルの比較をトレーニングします。
私たちの最高のパフォーマンスのアプローチはハイブリッドモデルで、5アンサンブルのChemformerモデルと2ステップのSiameseフレームワークを組み合わせたものです。
論文 参考訳(メタデータ) (2025-04-22T02:31:23Z) - Chemical knowledge-informed framework for privacy-aware retrosynthesis learning [72.39098405805318]
現在の機械学習に基づくレトロシンセシスは、複数のソースからの反応データを1つのエッジに集め、予測モデルを訓練する。
このパラダイムは、組織の境界を越えた広範なデータ可用性を必要とするため、かなりのプライバシーリスクをもたらす。
本研究では, 化学知識インフォームド・フレームワーク (CKIF) について紹介する。
論文 参考訳(メタデータ) (2025-02-26T13:13:24Z) - ReactAIvate: A Deep Learning Approach to Predicting Reaction Mechanisms and Unmasking Reactivity Hotspots [4.362338454684645]
我々は,反応ステップ分類の精度を96%とほぼ均一に達成した,解釈可能な注意に基づくGNNを開発した。
我々のモデルは、配布外クラスからでも、キー原子を十分に識別します。
この一般性は、モジュラーな方法で新しい反応型を包含することができるため、新しい分子の反応性を理解するための専門家にとって価値がある。
論文 参考訳(メタデータ) (2024-07-14T05:53:18Z) - Contextual Molecule Representation Learning from Chemical Reaction
Knowledge [24.501564702095937]
本稿では,共通化学における原子結合規則をうまく利用した自己教師型学習フレームワークREMOを紹介する。
REMOは、文献における170万の既知の化学反応に関するグラフ/トランスフォーマーエンコーダを事前訓練する。
論文 参考訳(メタデータ) (2024-02-21T12:58:40Z) - Chemist-X: Large Language Model-empowered Agent for Reaction Condition Recommendation in Chemical Synthesis [55.30328162764292]
Chemist-Xは、化学合成における反応条件最適化(RCO)タスクを自動化する包括的なAIエージェントである。
このエージェントは、検索強化世代(RAG)技術とAI制御のウェットラブ実験を実行する。
我々の自動ウェットラブ実験の結果は、LLMが制御するエンドツーエンドの操作を、ロボットに人間がいない状態で行うことで達成され、Chemist-Xの自動運転実験における能力が証明された。
論文 参考訳(メタデータ) (2023-11-16T01:21:33Z) - Improving Molecular Representation Learning with Metric
Learning-enhanced Optimal Transport [49.237577649802034]
分子レグレッション問題に対する一般化能力を高めるために,MROTと呼ばれる新しい最適輸送ベースアルゴリズムを開発した。
MROTは最先端のモデルよりも優れており、新しい物質の発見を加速する有望な可能性を示している。
論文 参考訳(メタデータ) (2022-02-13T04:56:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。