論文の概要: ReactAIvate: A Deep Learning Approach to Predicting Reaction Mechanisms and Unmasking Reactivity Hotspots
- arxiv url: http://arxiv.org/abs/2407.10090v1
- Date: Sun, 14 Jul 2024 05:53:18 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-16 19:28:46.686419
- Title: ReactAIvate: A Deep Learning Approach to Predicting Reaction Mechanisms and Unmasking Reactivity Hotspots
- Title(参考訳): ReactAIvate: 反応メカニズムの予測と反応ホットスポットのアンマキングに対するディープラーニングアプローチ
- Authors: Ajnabiul Hoque, Manajit Das, Mayank Baranwal, Raghavan B. Sunoj,
- Abstract要約: 我々は,反応ステップ分類の精度を96%とほぼ均一に達成した,解釈可能な注意に基づくGNNを開発した。
我々のモデルは、配布外クラスからでも、キー原子を十分に識別します。
この一般性は、モジュラーな方法で新しい反応型を包含することができるため、新しい分子の反応性を理解するための専門家にとって価値がある。
- 参考スコア(独自算出の注目度): 4.362338454684645
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A chemical reaction mechanism (CRM) is a sequence of molecular-level events involving bond-breaking/forming processes, generating transient intermediates along the reaction pathway as reactants transform into products. Understanding such mechanisms is crucial for designing and discovering new reactions. One of the currently available methods to probe CRMs is quantum mechanical (QM) computations. The resource-intensive nature of QM methods and the scarcity of mechanism-based datasets motivated us to develop reliable ML models for predicting mechanisms. In this study, we created a comprehensive dataset with seven distinct classes, each representing uniquely characterized elementary steps. Subsequently, we developed an interpretable attention-based GNN that achieved near-unity and 96% accuracy, respectively for reaction step classification and the prediction of reactive atoms in each such step, capturing interactions between the broader reaction context and local active regions. The near-perfect classification enables accurate prediction of both individual events and the entire CRM, mitigating potential drawbacks of Seq2Seq approaches, where a wrongly predicted character leads to incoherent CRM identification. In addition to interpretability, our model adeptly identifies key atom(s) even from out-of-distribution classes. This generalizabilty allows for the inclusion of new reaction types in a modular fashion, thus will be of value to experts for understanding the reactivity of new molecules.
- Abstract(参考訳): ケミカル・リアクション・メカニズム(CRM)は、反応経路に沿って過渡的な中間体を生成し、反応物質が生成物へと変化する過程を含む分子レベルの事象の系列である。
このようなメカニズムを理解することは、新しい反応の設計と発見に不可欠である。
CRMを探索するための現在利用可能な方法の1つは量子力学(QM)計算である。
QM手法の資源集約的な性質とメカニズムベースのデータセットの不足は、我々はメカニズムを予測するための信頼性の高いMLモデルを開発する動機となった。
本研究では,7つの異なるクラスを持つ包括的データセットを作成し,それぞれが特徴的基本ステップを表現した。
その後,反応過程の分類と反応原子の予測を行い,より広い反応コンテキストと局所活性領域の相互作用を捉えるために,ほぼ均一かつ96%の精度で解析可能な注意ベースGNNを開発した。
ほぼ完璧な分類は、個々のイベントとCRM全体の正確な予測を可能にし、Seq2Seqアプローチの潜在的な欠点を軽減する。
解釈可能性に加えて,本モデルでは,配布外クラスからでも鍵原子を十分に同定する。
この一般性は、モジュラーな方法で新しい反応型を包含することができるため、新しい分子の反応性を理解するための専門家にとって価値がある。
関連論文リスト
- Beyond Major Product Prediction: Reproducing Reaction Mechanisms with
Machine Learning Models Trained on a Large-Scale Mechanistic Dataset [10.968137261042715]
有機反応の機械的理解は、反応の発生、不純物予測、そして原則として反応発見を促進する。
いくつかの機械学習モデルは、反応生成物を予測するタスクに対処しようとしているが、反応機構を予測するための拡張は、対応する力学データセットの欠如によって妨げられている。
実験によって報告された反応物質と生成物の中間体を専門家の反応テンプレートを用いて入力し、その結果の5,184,184個の基本ステップに基づいて機械学習モデルを訓練することにより、そのようなデータセットを構築する。
論文 参考訳(メタデータ) (2024-03-07T15:26:23Z) - Contextual Molecule Representation Learning from Chemical Reaction
Knowledge [24.501564702095937]
本稿では,共通化学における原子結合規則をうまく利用した自己教師型学習フレームワークREMOを紹介する。
REMOは、文献における170万の既知の化学反応に関するグラフ/トランスフォーマーエンコーダを事前訓練する。
論文 参考訳(メタデータ) (2024-02-21T12:58:40Z) - Towards out-of-distribution generalizable predictions of chemical
kinetics properties [61.15970601264632]
Out-Of-Distribution (OOD) の運動特性予測は一般化可能である必要がある。
本稿では,OODの運動特性予測を3つのレベル(構造,条件,機構)に分類する。
我々は、OOD設定における反応予測のための最先端MLアプローチと、速度論的特性予測問題における最先端グラフOOD手法をベンチマークするために、包括的なデータセットを作成する。
論文 参考訳(メタデータ) (2023-10-04T20:36:41Z) - Towards Predicting Equilibrium Distributions for Molecular Systems with
Deep Learning [60.02391969049972]
本稿では,分子系の平衡分布を予測するために,分散グラフマー(DiG)と呼ばれる新しいディープラーニングフレームワークを導入する。
DiGはディープニューラルネットワークを用いて分子系の記述子に条件付き平衡分布に単純な分布を変換する。
論文 参考訳(メタデータ) (2023-06-08T17:12:08Z) - Doubly Stochastic Graph-based Non-autoregressive Reaction Prediction [59.41636061300571]
電子再分配予測を得るために2つの二重自己アテンションマッピングを組み合わせた新しいフレームワークを提案する。
提案手法は,非自己回帰モデルの予測性能を常に向上することを示す。
論文 参考訳(メタデータ) (2023-06-05T14:15:39Z) - Multi-level Protocol for Mechanistic Reaction Studies Using Semi-local
Fitted Potential Energy Surfaces [0.0]
本稿では化学反応機構の定期的な理論的研究のためのマルチスケールプロトコルを提案する。
この手法の性能の重要な側面は、そのマルチスケールな性質であり、これは計算労力を節約するだけでなく、意味のある情報を抽出することを可能にする。
論文 参考訳(メタデータ) (2023-04-03T12:55:29Z) - Sensing of magnetic field effects in radical-pair reactions using a
quantum sensor [50.591267188664666]
特定の化学反応における磁場効果(MFE)は、過去50年間によく確立されてきた。
我々は、局所的なスピン環境とセンサーとの結合を考慮して、ラジカル対の精巧で現実的なモデルを採用する。
2つのモデル系に対して、ラジカル対とNV量子センサの弱い結合状態においても検出可能なMFEの信号を導出する。
論文 参考訳(メタデータ) (2022-09-28T12:56:15Z) - Improving Molecular Representation Learning with Metric
Learning-enhanced Optimal Transport [49.237577649802034]
分子レグレッション問題に対する一般化能力を高めるために,MROTと呼ばれる新しい最適輸送ベースアルゴリズムを開発した。
MROTは最先端のモデルよりも優れており、新しい物質の発見を加速する有望な可能性を示している。
論文 参考訳(メタデータ) (2022-02-13T04:56:18Z) - Discovering Latent Causal Variables via Mechanism Sparsity: A New
Principle for Nonlinear ICA [81.4991350761909]
ICA(Independent component analysis)は、この目的を定式化し、実用的な応用のための推定手順を提供する手法の集合を指す。
潜伏変数は、潜伏機構をスパースに正則化すれば、置換まで復元可能であることを示す。
論文 参考訳(メタデータ) (2021-07-21T14:22:14Z) - Non-Autoregressive Electron Redistribution Modeling for Reaction
Prediction [26.007965383304864]
反応を1ショットで予測する非自己回帰学習パラダイムを考案する。
任意の電子フローとして反応を定式化し、新しいマルチポインター復号ネットワークで予測する。
USPTO-MITデータセットの実験により、我々の手法は最先端のトップ1の精度を確立した。
論文 参考訳(メタデータ) (2021-06-08T16:39:08Z) - Data Driven Reaction Mechanism Estimation via Transient Kinetics and
Machine Learning [0.0]
この研究は、一過性率/集中依存と機械学習を組み合わせて、アクティブなサイト数を測定する方法論を詳述する。
反応を駆動するLangmuir-Hinshelwood機構を明らかにするためにCO酸化データを解析した。
論文 参考訳(メタデータ) (2020-11-17T18:14:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。