論文の概要: GRID: Graph-based Reasoning for Intervention and Discovery in Built Environments
- arxiv url: http://arxiv.org/abs/2509.16397v1
- Date: Fri, 19 Sep 2025 20:19:48 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-23 18:58:15.772104
- Title: GRID: Graph-based Reasoning for Intervention and Discovery in Built Environments
- Title(参考訳): GRID: 構築された環境における干渉と発見のためのグラフベースの推論
- Authors: Taqiya Ehsan, Shuren Xia, Jorge Ortiz,
- Abstract要約: 商業ビルにおける手動のHVAC故障診断には、インシデント毎に8~12時間かかり、診断精度は60%に過ぎません。
本稿では,制約に基づく探索,ニューラル構造方程式モデリング,言語モデルなどを組み合わせた3段階の因果探索パイプラインGRIDについて述べる。
このフレームワークは制約ベースの手法、ニューラルアーキテクチャ、ドメイン固有の言語モデルを統合し、分析を構築する際の観察と因果的なギャップに対処する。
- 参考スコア(独自算出の注目度): 0.31096636737010974
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Manual HVAC fault diagnosis in commercial buildings takes 8-12 hours per incident and achieves only 60 percent diagnostic accuracy, reflecting analytics that stop at correlation instead of causation. To close this gap, we present GRID (Graph-based Reasoning for Intervention and Discovery), a three-stage causal discovery pipeline that combines constraint-based search, neural structural equation modeling, and language model priors to recover directed acyclic graphs from building sensor data. Across six benchmarks: synthetic rooms, EnergyPlus simulation, the ASHRAE Great Energy Predictor III dataset, and a live office testbed, GRID achieves F1 scores ranging from 0.65 to 1.00, with exact recovery (F1 = 1.00) in three controlled environments (Base, Hidden, Physical) and strong performance on real-world data (F1 = 0.89 on ASHRAE, 0.86 in noisy conditions). The method outperforms ten baseline approaches across all evaluation scenarios. Intervention scheduling achieves low operational impact in most scenarios (cost <= 0.026) while reducing risk metrics compared to baseline approaches. The framework integrates constraint-based methods, neural architectures, and domain-specific language model prompts to address the observational-causal gap in building analytics.
- Abstract(参考訳): 商業ビルにおける手動のHVAC故障診断は、インシデント毎に8~12時間かかり、因果関係ではなく相関関係で停止する分析を反映して、60%の診断精度しか達成できない。
このギャップを埋めるために,制約に基づく探索,ニューラル構造方程式モデリング,言語モデルを組み合わせた3段階の因果探索パイプラインであるGRID(Graph-based Reasoning for Intervention and Discovery)を提案する。
総合室、EnergyPlusシミュレーション、ASHRAE Great Energy Predictor IIIデータセット、およびライブオフィステストベッドの6つのベンチマークで、GRIDは3つの制御された環境(Base, Hidden, Physical)における正確なリカバリ(F1 = 1.00)と実世界のデータ(ASHRAEではF1 = 0.89、ノイズ条件では0.86)でF1スコアを達成している。
この方法は、すべての評価シナリオで10のベースラインアプローチより優れています。
インターベンションスケジューリングは、ほとんどのシナリオ(コスト<=0.026)において低い運用効果を達成すると同時に、ベースラインアプローチと比較してリスクメトリクスを低減します。
このフレームワークは制約ベースの手法、ニューラルアーキテクチャ、ドメイン固有の言語モデルを統合し、分析を構築する際の観察と因果的なギャップに対処する。
関連論文リスト
- Graph-Structured Data Analysis of Component Failure in Autonomous Cargo Ships Based on Feature Fusion [20.287188044863925]
本稿では,障害モードのグラフ構造化データセットを構築するためのハイブリッド機能融合フレームワークを提案する。
サブシステム/コンポーネント機能のエンコードにWord2Vecエンコーディング、障害モード/領域の処理にBERT-KPCA、障害影響と緊急意思決定のセマンティックな関連を定量化するSentence-BERTを用いて階層的特徴融合フレームワークを構築する。
論文 参考訳(メタデータ) (2025-07-18T08:02:49Z) - RoHOI: Robustness Benchmark for Human-Object Interaction Detection [78.18946529195254]
ヒューマン・オブジェクト・インタラクション(HOI)検出は、コンテキスト認識支援を可能にするロボット・ヒューマン・アシストに不可欠である。
HOI検出のための最初のベンチマークを導入し、様々な課題下でモデルのレジリエンスを評価する。
我々のベンチマークであるRoHOIは、HICO-DETとV-COCOデータセットに基づく20の汚職タイプと、新しいロバストネスにフォーカスしたメトリクスを含んでいる。
論文 参考訳(メタデータ) (2025-07-12T01:58:04Z) - Interpretable AI for Time-Series: Multi-Model Heatmap Fusion with Global Attention and NLP-Generated Explanations [1.331812695405053]
本稿では,ResNetが生成するヒートマップと,グローバルに重み付けされた入力サリエンシを備えた再構成された2次元変換器を統合することで,モデル解釈可能性を向上させる新しいフレームワークを提案する。
本手法は、勾配重み付きアクティベーションマップ(ResNet)とトランスフォーマーのアテンションロールアウトを統合可視化にマージし、空間的・時間的アライメントを実現する。
臨床(ECG不整脈検出)および産業データセットに関する実証的評価は,有意な改善を示した。
論文 参考訳(メタデータ) (2025-06-30T20:04:35Z) - Pix2Geomodel: A Next-Generation Reservoir Geomodeling with Property-to-Property Translation [2.004012818482403]
本研究では、Pix2Pixをベースとした新しい条件付き生成対向ネットワーク(cGAN)フレームワークであるPix2Geomodelを紹介する。
グローニンゲンガス田のロトリーゲンド貯水池から貯水池特性(空洞、ポーシティ、透水性、飽和度)を予測するように設計されている。
その結果, 病状 (PA 0.88, FWIoU 0.85) と水飽和 (PA 0.96, FWIoU 0.95) の精度が高く, 気孔率 (PA 0.70, FWIoU 0.55) と透過性 (PA 0.74, FWIoU 0.60) が適度に向上し, 翻訳性能も良好であった。
論文 参考訳(メタデータ) (2025-06-21T15:58:27Z) - Graph-Based Fault Diagnosis for Rotating Machinery: Adaptive Segmentation and Structural Feature Integration [0.0]
本稿では,回転機械における頑健かつ解釈可能なマルチクラス故障診断のためのグラフベースフレームワークを提案する。
エントロピー最適化信号セグメンテーション、時間周波数特徴抽出、グラフ理論モデリングを統合し、振動信号を構造化表現に変換する。
提案手法は,2つのベンチマークデータセットで評価した場合,高い診断精度を実現する。
論文 参考訳(メタデータ) (2025-04-29T13:34:52Z) - Hybrid-Segmentor: A Hybrid Approach to Automated Fine-Grained Crack Segmentation in Civil Infrastructure [52.2025114590481]
エンコーダ・デコーダをベースとした手法であるHybrid-Segmentorを導入する。
これにより、モデルは、様々な種類の形状、表面、き裂の大きさを区別する一般化能力を向上させることができる。
提案モデルは,5つの測定基準(精度0.971,精度0.804,リコール0.744,F1スコア0.770,IoUスコア0.630)で既存ベンチマークモデルより優れ,最先端の状態を達成している。
論文 参考訳(メタデータ) (2024-09-04T16:47:16Z) - Fast Information Streaming Handler (FisH): A Unified Seismic Neural Network for Single Station Real-Time Earthquake Early Warning [56.45067876391473]
既存のEEWアプローチは、フェーズの選択、位置推定、大きさ推定を独立したタスクとして扱い、統一されたフレームワークを欠いている。
我々は高速情報ストリーミングハンドラー(FisH)と呼ばれる新しい統合型地震波ニューラルネットワークを提案する。
FisHは、リアルタイムストリーミング地震データを処理し、位相選択、位置推定、大きさ推定をエンドツーエンドで同時生成するように設計されている。
論文 参考訳(メタデータ) (2024-08-13T04:33:23Z) - Discovering Dynamic Causal Space for DAG Structure Learning [64.763763417533]
本稿では,DAG構造学習のための動的因果空間であるCASPERを提案する。
グラフ構造をスコア関数に統合し、因果空間における新しい尺度として、推定真理DAGと基底真理DAGの因果距離を忠実に反映する。
論文 参考訳(メタデータ) (2023-06-05T12:20:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。