論文の概要: Explainable Gait Abnormality Detection Using Dual-Dataset CNN-LSTM Models
- arxiv url: http://arxiv.org/abs/2509.16472v1
- Date: Fri, 19 Sep 2025 23:53:45 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-23 18:58:15.808418
- Title: Explainable Gait Abnormality Detection Using Dual-Dataset CNN-LSTM Models
- Title(参考訳): デュアルデータセットCNN-LSTMモデルを用いた説明可能な歩行異常検出
- Authors: Parth Agarwal, Sangaa Chatterjee, Md Faisal Kabir, Suman Saha,
- Abstract要約: 本稿では,GAVDとOU-Mのシルエット上の3D分岐を用いた2分岐CNN-LSTMフレームワークを提案する。
ホールドアウトセットでは、強いリコールとF1で98.6%の精度を達成する。
- 参考スコア(独自算出の注目度): 1.2524460438908702
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Gait is a key indicator in diagnosing movement disorders, but most models lack interpretability and rely on single datasets. We propose a dual-branch CNN-LSTM framework a 1D branch on joint-based features from GAVD and a 3D branch on silhouettes from OU-MVLP. Interpretability is provided by SHAP (temporal attributions) and Grad-CAM (spatial localization).On held-out sets, the system achieves 98.6% accuracy with strong recall and F1. This approach advances explainable gait analysis across both clinical and biometric domains.
- Abstract(参考訳): 歩行は運動障害の診断において重要な指標であるが、ほとんどのモデルは解釈可能性に欠け、単一のデータセットに依存している。
本稿では,GAVDとOU-MVLPのシルエット上の3D分岐を用いた2分岐CNN-LSTMフレームワークを提案する。
解釈性はSHAP(時間的属性)とGrad-CAM(空間的局在)によって提供される。
ホールドアウトセットでは、強いリコールとF1で98.6%の精度を達成する。
このアプローチは、臨床領域と生体領域の両方にわたる説明可能な歩行分析を推し進める。
関連論文リスト
- Automated Labeling of Intracranial Arteries with Uncertainty Quantification Using Deep Learning [2.6279333406008476]
3D Time-of-light Magnetic Resonance Angiography (3D ToF-MRA) を用いたディープラーニングによる自動動脈ラベル作成フレームワークを提案する。
我々のフレームワークは、自動脳血管ラベリングのためのスケーラブルで正確で不確実なソリューションを提供し、下流血行動態解析をサポートし、臨床統合を容易にする。
論文 参考訳(メタデータ) (2025-09-22T12:57:21Z) - Unified Supervision For Vision-Language Modeling in 3D Computed Tomography [1.4193731654133002]
汎用視覚言語モデル(VLM)は放射線学において有望なツールとして登場し、ゼロショット機能を提供している。
診断放射線学のような高度な領域では、これらのモデルは信頼できる臨床使用に必要な識別精度を欠いていることが多い。
分類ラベルやセグメンテーションマスクにエンコードされた多種多様な監視信号を統合するボリュームVLMであるUniferumを,単一のトレーニングフレームワークに導入する。
論文 参考訳(メタデータ) (2025-09-01T15:30:17Z) - Multimodal Outer Arithmetic Block Dual Fusion of Whole Slide Images and Omics Data for Precision Oncology [6.418265127069878]
本稿では, 局所(パッチレベル)から大域(スライダーレベル)の相互作用の相補的な情報を取得するために, 早期・後期融合におけるオミック埋め込みの利用を提案する。
この二重融合戦略は、解釈可能性と分類性能を高め、臨床診断の可能性を強調している。
論文 参考訳(メタデータ) (2024-11-26T13:25:53Z) - Reflecting Topology Consistency and Abnormality via Learnable Attentions for Airway Labeling [19.269806092729468]
気道解剖学的ラベリングは、気管支鏡で複雑な気管支構造を識別し、ナビゲートするために、臨床医にとって不可欠である。
従来の手法は一貫性のない予測を生成する傾向にある。
本稿では, トポロジカルな整合性を高め, 異常な気道分岐の検出を改善する手法を提案する。
論文 参考訳(メタデータ) (2024-10-31T12:04:30Z) - DA-Flow: Dual Attention Normalizing Flow for Skeleton-based Video Anomaly Detection [52.74152717667157]
本稿では,DAM(Dual Attention Module)と呼ばれる軽量モジュールを提案する。
フレームアテンション機構を使用して、最も重要なフレームを識別し、スケルトンアテンション機構を使用して、最小パラメータとフロップで固定されたパーティション間の広範な関係をキャプチャする。
論文 参考訳(メタデータ) (2024-06-05T06:18:03Z) - Domain Adaptive Synapse Detection with Weak Point Annotations [63.97144211520869]
弱点アノテーションを用いたドメイン適応型シナプス検出のためのフレームワークであるAdaSynを提案する。
I SBI 2023のWASPSYNチャレンジでは、我々の手法が第1位にランクインした。
論文 参考訳(メタデータ) (2023-08-31T05:05:53Z) - TransMIL: Transformer based Correlated Multiple Instance Learning for
Whole Slide Image Classication [38.58585442160062]
マルチプル・インスタンス・ラーニング(MIL)は、スライド画像全体(WSI)に基づく病理診断において、弱い教師付き分類を解決する強力なツールである。
我々は、相関MILと呼ばれる新しいフレームワークを提案し、収束の証明を提供した。
我々は3つの異なる計算病理問題に対する様々な実験を行い、最先端の手法と比較してより優れた性能と高速な収束を実現した。
論文 参考訳(メタデータ) (2021-06-02T02:57:54Z) - G-MIND: An End-to-End Multimodal Imaging-Genetics Framework for
Biomarker Identification and Disease Classification [49.53651166356737]
診断によって誘導される画像データと遺伝データを統合し、解釈可能なバイオマーカーを提供する新しいディープニューラルネットワークアーキテクチャを提案する。
2つの機能的MRI(fMRI)パラダイムとSingle Nucleotide Polymorphism (SNP)データを含む統合失調症の集団研究で本モデルを評価した。
論文 参考訳(メタデータ) (2021-01-27T19:28:04Z) - Fader Networks for domain adaptation on fMRI: ABIDE-II study [68.5481471934606]
我々は3次元畳み込みオートエンコーダを用いて、無関係な空間画像表現を実現するとともに、ABIDEデータ上で既存のアプローチより優れていることを示す。
論文 参考訳(メタデータ) (2020-10-14T16:50:50Z) - Performance of Dual-Augmented Lagrangian Method and Common Spatial
Patterns applied in classification of Motor-Imagery BCI [68.8204255655161]
運動画像に基づく脳-コンピュータインタフェース(MI-BCI)は、神経リハビリテーションのための画期的な技術になる可能性がある。
使用する脳波信号のノイズの性質のため、信頼性の高いBCIシステムは特徴の最適化と抽出のために特別な手順を必要とする。
論文 参考訳(メタデータ) (2020-10-13T20:50:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。