論文の概要: MedGS: Gaussian Splatting for Multi-Modal 3D Medical Imaging
- arxiv url: http://arxiv.org/abs/2509.16806v1
- Date: Sat, 20 Sep 2025 20:52:26 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-23 18:58:15.983114
- Title: MedGS: Gaussian Splatting for Multi-Modal 3D Medical Imaging
- Title(参考訳): MedGS:マルチモーダル3Dイメージングのためのガウススプラッティング
- Authors: Kacper Marzol, Ignacy Kolton, Weronika Smolak-Dyżewska, Joanna Kaleta, Marcin Mazur, Przemysław Spurek,
- Abstract要約: 本稿では,ガウススプラッティング(GS)に基づく半教師付き神経暗黙表面再構成フレームワークであるMedGSを紹介する。
この枠組みでは、医用画像データは3次元空間に埋め込まれた連続した2次元のフレームとして表現される。
その結果、MedGSは従来の暗黙の手法よりも効率的なトレーニングを提供している。
- 参考スコア(独自算出の注目度): 3.003629981599447
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multi-modal three-dimensional (3D) medical imaging data, derived from ultrasound, magnetic resonance imaging (MRI), and potentially computed tomography (CT), provide a widely adopted approach for non-invasive anatomical visualization. Accurate modeling, registration, and visualization in this setting depend on surface reconstruction and frame-to-frame interpolation. Traditional methods often face limitations due to image noise and incomplete information between frames. To address these challenges, we present MedGS, a semi-supervised neural implicit surface reconstruction framework that employs a Gaussian Splatting (GS)-based interpolation mechanism. In this framework, medical imaging data are represented as consecutive two-dimensional (2D) frames embedded in 3D space and modeled using Gaussian-based distributions. This representation enables robust frame interpolation and high-fidelity surface reconstruction across imaging modalities. As a result, MedGS offers more efficient training than traditional neural implicit methods. Its explicit GS-based representation enhances noise robustness, allows flexible editing, and supports precise modeling of complex anatomical structures with fewer artifacts. These features make MedGS highly suitable for scalable and practical applications in medical imaging.
- Abstract(参考訳): 超音波、MRI(MRI)、CT(CT)から導かれるマルチモーダルな3次元医用画像データにより、非侵襲的な解剖学的可視化に広く採用されているアプローチを提供する。
この環境での正確なモデリング、登録、可視化は、表面再構成とフレーム間補間に依存する。
従来の手法では、画像ノイズやフレーム間の不完全な情報による制限に直面していることが多い。
これらの課題に対処するために,ガウススプラッティング(GS)に基づく補間機構を用いた半教師付き神経暗黙表面再構成フレームワークであるMedGSを提案する。
この枠組みでは、医用画像データは3次元空間に埋め込まれた連続した二次元(2次元)フレームとして表現され、ガウス分布を用いてモデル化される。
この表現は、画像のモダリティを越えて頑健なフレーム補間と高忠実な表面再構成を可能にする。
その結果、MedGSは従来の暗黙の手法よりも効率的なトレーニングを提供している。
その明示的なGSベースの表現は、ノイズの堅牢性を高め、フレキシブルな編集を可能にし、より少ないアーティファクトを持つ複雑な解剖学的構造の正確なモデリングをサポートする。
これらの特徴により、MedGSは医療画像のスケーラブルで実用的な応用に非常に適している。
関連論文リスト
- Accelerating 3D Photoacoustic Computed Tomography with End-to-End Physics-Aware Neural Operators [74.65171736966131]
光音響計算トモグラフィ(PACT)は、光コントラストと超音波分解能を組み合わせることで、光拡散限界を超える深部像を実現する。
現在の実装では、高密度トランスデューサアレイと長い取得時間を必要とし、臨床翻訳を制限している。
本研究では,センサ計測からボリューム再構成まで,逆音響マッピングを直接学習する物理認識モデルであるPanoを紹介する。
論文 参考訳(メタデータ) (2025-09-11T23:12:55Z) - M3Ret: Unleashing Zero-shot Multimodal Medical Image Retrieval via Self-Supervision [24.846428105192405]
我々は、モダリティ固有のカスタマイズなしで、統一されたビジュアルエンコーダであるM3Retを訓練する。
生成的(MAE)およびコントラスト的(SimDINO)自己教師型学習(SSL)パラダイムを用いて、転送可能な表現をうまく学習する。
提案手法は,DINOv3 やテキスト教師付き BMC-CLIP などの強力なベースラインを超越して,すべてのモダリティを横断するゼロショット画像画像検索において,新たな最先端技術を実現する。
論文 参考訳(メタデータ) (2025-09-01T10:59:39Z) - Reference-Guided Diffusion Inpainting For Multimodal Counterfactual Generation [55.2480439325792]
自律運転や医用画像解析などの安全クリティカルなアプリケーションは、厳格なテストのために広範なマルチモーダルデータを必要とする。
本研究は, 自律運転における合成データ生成法と, 医療画像解析法であるMObIとAnydoorMedの2つの新しい手法を紹介する。
論文 参考訳(メタデータ) (2025-07-30T19:43:47Z) - 3D Wavelet Latent Diffusion Model for Whole-Body MR-to-CT Modality Translation [13.252652406393205]
既存の全身画像のためのMR-to-CT法では、生成したCT画像と入力したMR画像との空間的アライメントが低くなることが多い。
本稿では,これらの制約に対処する新しい3次元ウェーブレット遅延拡散モデル(3D-WLDM)を提案する。
エンコーダ・デコーダアーキテクチャにWavelet Residual Moduleを組み込むことで,画像空間と潜伏空間をまたいだ微細な特徴の捕捉と再構築が促進される。
論文 参考訳(メタデータ) (2025-07-14T06:17:05Z) - RadIR: A Scalable Framework for Multi-Grained Medical Image Retrieval via Radiology Report Mining [64.66825253356869]
本稿では,複数の粒度で画像の類似度を決定するために,高密度ラジオロジーレポートを利用した新しい手法を提案する。
我々は、胸部X線用MIMIC-IRとCTスキャン用CTRATE-IRの2つの総合的な医用画像検索データセットを構築した。
RadIR-CXR と Model-ChestCT という2つの検索システムを開発し,従来の画像画像検索と画像レポート検索に優れた性能を示す。
論文 参考訳(メタデータ) (2025-03-06T17:43:03Z) - TomoGRAF: A Robust and Generalizable Reconstruction Network for Single-View Computed Tomography [3.1209855614927275]
従来の解析的・定性的なCT再構成アルゴリズムは数百の角データサンプリングを必要とする。
我々は,高品質な3Dボリュームを再構成するために,ユニークなX線輸送物理を取り入れた新しいTtomoGRAFフレームワークを開発した。
論文 参考訳(メタデータ) (2024-11-12T20:07:59Z) - SDR-Former: A Siamese Dual-Resolution Transformer for Liver Lesion
Classification Using 3D Multi-Phase Imaging [59.78761085714715]
本研究は肝病変分類のための新しいSDR-Formerフレームワークを提案する。
提案フレームワークは2つの臨床データセットに関する総合的な実験を通じて検証された。
科学コミュニティを支援するため,肝病変解析のための多段階MRデータセットを公開しています。
論文 参考訳(メタデータ) (2024-02-27T06:32:56Z) - On Sensitivity and Robustness of Normalization Schemes to Input
Distribution Shifts in Automatic MR Image Diagnosis [58.634791552376235]
深層学習(DL)モデルは、再構成画像を入力として、複数の疾患の診断において最先端のパフォーマンスを達成した。
DLモデルは、トレーニングとテストフェーズ間の入力データ分布の変化につながるため、さまざまなアーティファクトに敏感である。
本稿では,グループ正規化やレイヤ正規化といった他の正規化手法を用いて,画像のさまざまなアーチファクトに対して,モデル性能にロバスト性を注入することを提案する。
論文 参考訳(メタデータ) (2023-06-23T03:09:03Z) - Multiscale Metamorphic VAE for 3D Brain MRI Synthesis [5.060516201839319]
3次元脳MRIの創発的モデリングは、データ分布の十分なカバレッジを確保しつつ、高い視覚的忠実度を達成することの難しさを示す。
本研究では, この課題に対して, 可変オートエンコーダフレームワークにおける構成可能なマルチスケール形態素変換を用いて対処することを提案する。
VAEやGAN(Generative Adversarial Network)をベースとした先行作業と比較して,FIDの性能は,同等あるいは優れた再現品質を維持しつつ,大幅に向上した。
論文 参考訳(メタデータ) (2023-01-09T09:15:30Z) - Hierarchical Amortized Training for Memory-efficient High Resolution 3D
GAN [52.851990439671475]
本稿では,高解像度な3D画像を生成することができる新しいエンドツーエンドGANアーキテクチャを提案する。
トレーニングと推論の異なる構成を使用することで、この目標を達成する。
3次元胸郭CTと脳MRIの実験により、我々のアプローチは画像生成における最先端技術より優れていることが示された。
論文 参考訳(メタデータ) (2020-08-05T02:33:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。