論文の概要: Long-Tailed Out-of-Distribution Detection with Refined Separate Class Learning
- arxiv url: http://arxiv.org/abs/2509.17034v1
- Date: Sun, 21 Sep 2025 11:09:57 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-23 18:58:16.08114
- Title: Long-Tailed Out-of-Distribution Detection with Refined Separate Class Learning
- Title(参考訳): 補修型分級学習による長期分布検出
- Authors: Shuai Feng, Yuxin Ge, Yuntao Du, Mingcai Chen, Lei Feng,
- Abstract要約: 堅牢な機械学習モデルをデプロイするには、アウト・オブ・ディストリビューション(OOD)検出が不可欠だ。
我々はRefined Separate Class Learning (RSCL)と呼ばれる新しいアプローチを提案する。
RSCLは、分配データにおける分類精度を改善しつつ、優れたOOD検出性能を実現する。
- 参考スコア(独自算出の注目度): 16.63797309535387
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Out-of-distribution (OOD) detection is crucial for deploying robust machine learning models. However, when training data follows a long-tailed distribution, the model's ability to accurately detect OOD samples is significantly compromised, due to the confusion between OOD samples and head/tail classes. To distinguish OOD samples from both head and tail classes, the separate class learning (SCL) approach has emerged as a promising solution, which separately conduct head-specific and tail-specific class learning. To this end, we examine the limitations of existing works of SCL and reveal that the OOD detection performance is notably influenced by the use of static scaling temperature value and the presence of uninformative outliers. To mitigate these limitations, we propose a novel approach termed Refined Separate Class Learning (RSCL), which leverages dynamic class-wise temperature adjustment to modulate the temperature parameter for each in-distribution class and informative outlier mining to identify diverse types of outliers based on their affinity with head and tail classes. Extensive experiments demonstrate that RSCL achieves superior OOD detection performance while improving the classification accuracy on in-distribution data.
- Abstract(参考訳): 堅牢な機械学習モデルをデプロイするには、アウト・オブ・ディストリビューション(OOD)検出が不可欠だ。
しかし,OODサンプルとヘッド・テール・クラスとの混同が原因で,OODサンプルを正確に検出する能力は著しく損なわれている。
OODサンプルを頭と尾の両方のクラスと区別するために、SCLアプローチは、頭固有のクラス学習と尾固有のクラス学習を別々に行う、有望なソリューションとして登場した。
そこで本研究では,SCLの既存の作業の限界について検討し,OOD検出性能が静的スケーリング温度値の使用と非形式外乱の存在の影響を顕著に示す。
これらの制約を緩和するために、動的クラス温度調整を活用して、分布内クラスごとに温度パラメータを調整し、情報的外層マイニングを行い、頭と尾のクラスとの親和性に基づいて様々な種類の外層を識別する、Refined Separate Class Learning (RSCL) という新しいアプローチを提案する。
RSCLは,分布内データの分類精度を向上しつつ,優れたOOD検出性能を発揮することを示した。
関連論文リスト
- Going Beyond Conventional OOD Detection [0.0]
アウト・オブ・ディストリビューション(OOD)検出は、重要なアプリケーションにディープラーニングモデルの安全なデプロイを保証するために重要である。
従来型OOD検出(ASCOOD)への統一的アプローチを提案する。
提案手法は, スパイラル相関の影響を効果的に軽減し, 微粒化特性の獲得を促す。
論文 参考訳(メタデータ) (2024-11-16T13:04:52Z) - Out-of-Distribution Detection in Long-Tailed Recognition with Calibrated
Outlier Class Learning [24.6581764192229]
既存のアウト・オブ・ディストリビューション(OOD)手法は、バランスの取れたデータセットで大きな成功を収めている。
OODサンプルは、しばしば誤ってヘッドクラスに分類され、/またはテールクラスのサンプルはOODサンプルとして扱われる。
提案手法では,1)オフレイアクラス学習において,OODサンプルを表現空間の頭と尾の両方のクラスと区別するために,デバイアスド・大型辺縁学習法を導入し,2)オフレイアクラスを意識したロジット校正法を定義し,長い尾の分類信頼性を高める。
論文 参考訳(メタデータ) (2023-12-17T11:11:02Z) - EAT: Towards Long-Tailed Out-of-Distribution Detection [55.380390767978554]
本稿では,長い尾を持つOOD検出の課題に対処する。
主な困難は、尾クラスに属するサンプルとOODデータを区別することである。
本稿では,(1)複数の禁制クラスを導入して分布内クラス空間を拡大すること,(2)コンテキストリッチなOODデータに画像をオーバーレイすることでコンテキスト限定のテールクラスを拡大すること,の2つの簡単な考え方を提案する。
論文 参考訳(メタデータ) (2023-12-14T13:47:13Z) - LINe: Out-of-Distribution Detection by Leveraging Important Neurons [15.797257361788812]
本稿では,分布内データとOODデータ間のモデル出力の差を解析するための新しい側面を紹介する。
本稿では,分布検出のポストホックアウトのための新しい手法であるLINe( Leveraging Important Neurons)を提案する。
論文 参考訳(メタデータ) (2023-03-24T13:49:05Z) - Hierarchical Semi-Supervised Contrastive Learning for
Contamination-Resistant Anomaly Detection [81.07346419422605]
異常検出は、通常のデータ分布から逸脱したサンプルを特定することを目的としている。
コントラスト学習は、異常の効果的な識別を可能にする表現のサンプル化に成功している。
汚染耐性異常検出のための新しい階層型半教師付きコントラスト学習フレームワークを提案する。
論文 参考訳(メタデータ) (2022-07-24T18:49:26Z) - How robust are pre-trained models to distribution shift? [82.08946007821184]
自己教師付き学習(SSL)と自己エンコーダベースモデル(AE)の相互関係が相互関係に与える影響を示す。
本研究では, 線形ヘッドの潜在バイアスから事前学習したモデルの性能を分離するために, アウト・オブ・ディストリビューション(OOD)データに基づいて訓練された線形ヘッドを用いた新しい評価手法を開発した。
論文 参考訳(メタデータ) (2022-06-17T16:18:28Z) - Trash to Treasure: Harvesting OOD Data with Cross-Modal Matching for
Open-Set Semi-Supervised Learning [101.28281124670647]
オープンセット半教師付き学習(Open-set SSL)では、ラベルなしデータにOOD(Out-of-distribution)サンプルを含む、難しいが実用的なシナリオを調査する。
我々は、OODデータの存在を効果的に活用し、特徴学習を増強する新しいトレーニングメカニズムを提案する。
我々のアプローチは、オープンセットSSLのパフォーマンスを大幅に向上させ、最先端技術よりも大きなマージンで性能を向上します。
論文 参考訳(メタデータ) (2021-08-12T09:14:44Z) - Does Your Dermatology Classifier Know What It Doesn't Know? Detecting
the Long-Tail of Unseen Conditions [18.351120611713586]
皮膚の状態を正確に分類できる深層学習システムを開発し,厳密に評価した。
このタスクは、アウトオブディストリビューション(OOD)検出問題としてフレーム化します。
我々の新しいアプローチである階層外乱検出(HOD)は、各トレーニングクラスに対して複数の禁制クラスを割り当て、インレーヤ対外乱の粗い分類を共同で行う。
論文 参考訳(メタデータ) (2021-04-08T15:15:22Z) - Learn what you can't learn: Regularized Ensembles for Transductive
Out-of-distribution Detection [76.39067237772286]
ニューラルネットワークの現在のアウト・オブ・ディストリビューション(OOD)検出アルゴリズムは,様々なOOD検出シナリオにおいて不満足な結果をもたらすことを示す。
本稿では,テストデータのバッチを観察した後に検出方法を調整することで,このような「ハード」なOODシナリオがいかに有用かを検討する。
本稿では,テストデータと正規化に人工ラベリング手法を用いて,テストバッチ内のOODサンプルに対してのみ矛盾予測を生成するモデルのアンサンブルを求める手法を提案する。
論文 参考訳(メタデータ) (2020-12-10T16:55:13Z) - Overcoming Classifier Imbalance for Long-tail Object Detection with
Balanced Group Softmax [88.11979569564427]
本報告では, 長期分布前における最先端モデルの過小評価に関する最初の体系的解析を行う。
本稿では,グループワイドトレーニングを通じて検出フレームワーク内の分類器のバランスをとるための,新しいバランス付きグループソフトマックス(BAGS)モジュールを提案する。
非常に最近の長尾大語彙オブジェクト認識ベンチマークLVISの大規模な実験により,提案したBAGSは検出器の性能を著しく向上することが示された。
論文 参考訳(メタデータ) (2020-06-18T10:24:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。