論文の概要: AgriDoctor: A Multimodal Intelligent Assistant for Agriculture
- arxiv url: http://arxiv.org/abs/2509.17044v1
- Date: Sun, 21 Sep 2025 11:51:57 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-23 18:58:16.086596
- Title: AgriDoctor: A Multimodal Intelligent Assistant for Agriculture
- Title(参考訳): AgriDoctor: 農業のためのマルチモーダルなインテリジェントアシスタント
- Authors: Mingqing Zhang, Zhuoning Xu, Peijie Wang, Rongji Li, Liang Wang, Qiang Liu, Jian Xu, Xuyao Zhang, Shu Wu, Liang Wang,
- Abstract要約: AgriDoctorは、インテリジェントな作物病診断と農業知識の相互作用のために設計されたモジュラーでマルチモーダルなフレームワークである。
効果的なトレーニングと評価を容易にするために,400000の注釈付き疾患画像,831のエキスパートによる知識エントリ,30000のバイリンガルプロンプトによるインテント駆動ツール選択のベンチマークであるAgriMMを構築した。
実験により、AgriMMで訓練されたAgriDoctorは、細粒度の農業作業において最先端のLVLMを著しく上回っていることが示された。
- 参考スコア(独自算出の注目度): 45.77373971125537
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurate crop disease diagnosis is essential for sustainable agriculture and global food security. Existing methods, which primarily rely on unimodal models such as image-based classifiers and object detectors, are limited in their ability to incorporate domain-specific agricultural knowledge and lack support for interactive, language-based understanding. Recent advances in large language models (LLMs) and large vision-language models (LVLMs) have opened new avenues for multimodal reasoning. However, their performance in agricultural contexts remains limited due to the absence of specialized datasets and insufficient domain adaptation. In this work, we propose AgriDoctor, a modular and extensible multimodal framework designed for intelligent crop disease diagnosis and agricultural knowledge interaction. As a pioneering effort to introduce agent-based multimodal reasoning into the agricultural domain, AgriDoctor offers a novel paradigm for building interactive and domain-adaptive crop health solutions. It integrates five core components: a router, classifier, detector, knowledge retriever and LLMs. To facilitate effective training and evaluation, we construct AgriMM, a comprehensive benchmark comprising 400000 annotated disease images, 831 expert-curated knowledge entries, and 300000 bilingual prompts for intent-driven tool selection. Extensive experiments demonstrate that AgriDoctor, trained on AgriMM, significantly outperforms state-of-the-art LVLMs on fine-grained agricultural tasks, establishing a new paradigm for intelligent and sustainable farming applications.
- Abstract(参考訳): 作物病の正確な診断は、持続可能な農業と世界の食料安全保障に不可欠である。
既存の手法は主にイメージベース分類器やオブジェクト検出器のような単調なモデルに依存しているが、ドメイン固有の農業知識を組み込む能力は限られており、対話型言語ベースの理解のサポートが欠如している。
大規模言語モデル (LLM) と大規模視覚言語モデル (LVLM) の最近の進歩は, マルチモーダル推論のための新たな道を開いた。
しかし、特定のデータセットが欠如し、ドメイン適応が不十分なため、農業環境でのパフォーマンスは依然として限られている。
本稿では,知的作物病の診断と農業知識の相互作用を目的としたモジュール型・拡張可能なマルチモーダルフレームワークであるAgriDoctorを提案する。
AgriDoctorは、エージェントベースのマルチモーダル推論を農業領域に導入する先駆的な取り組みとして、インタラクティブでドメイン対応の作物健康ソリューションを構築するための新しいパラダイムを提供する。
ルータ、分類器、検出器、知識検索、LLMの5つのコアコンポーネントを統合している。
効果的なトレーニングと評価を容易にするため,400000個の注釈付き疾患画像,831個の専門家による知識エントリ,インテント駆動ツール選択のための30000個のバイリンガルプロンプトからなる総合的なベンチマークであるAgriMMを構築した。
AgriMMで訓練されたAgriDoctorは、細粒度の農業作業において最先端のLVLMを著しく上回り、インテリジェントで持続可能な農業アプリケーションのための新しいパラダイムを確立している。
関連論文リスト
- AgriGPT: a Large Language Model Ecosystem for Agriculture [16.497060004913806]
AgriGPTは、農業利用のためのドメイン特化大規模言語モデルエコシステムである。
信頼性のあるデータソースを,高品質で標準化された質問応答データセットであるAgri-342Kにコンパイルする,スケーラブルなデータエンジンを設計する。
本稿では,高密度検索,スパース検索,マルチホップ知識グラフ推論を組み合わせた3チャンネル検索拡張フレームワークTri-RAGを用いる。
論文 参考訳(メタデータ) (2025-08-12T04:51:08Z) - AI in Agriculture: A Survey of Deep Learning Techniques for Crops, Fisheries and Livestock [77.95897723270453]
作物、漁業、家畜が世界の食料生産のバックボーンを形成し、成長を続ける世界の人口を養うのに不可欠である。
これらの問題に対処するには、効率的で正確でスケーラブルな技術ソリューションが必要であり、人工知能(AI)の重要性を強調している。
本調査では,従来の機械学習アプローチ,高度なディープラーニング技術,最新のビジョン言語基礎モデルなど,200以上の研究成果を体系的かつ徹底的にレビューする。
論文 参考訳(メタデータ) (2025-07-29T17:59:48Z) - Leveraging Synthetic Data for Question Answering with Multilingual LLMs in the Agricultural Domain [1.0144032120138065]
本研究は,インドの農業特化資料から多言語(ヒンディー語,パンジャービ語)の合成データセットを生成する。
人為的データセットの評価は、事実性、関連性、農業コンセンサスにおいて著しく改善されている。
論文 参考訳(メタデータ) (2025-07-22T19:25:10Z) - A Multimodal Benchmark Dataset and Model for Crop Disease Diagnosis [5.006697347461899]
本稿では,農学研究の分野を開拓するための先駆的資源である作物病領域マルチモーダルデータセットについて紹介する。
このデータセットは、さまざまな作物の病気の画像13万7000枚と、幅広い農業知識にまたがる100万の質問と回答のペアで構成されている。
我々は,最先端のマルチモーダルモデルを微調整し,作物病診断の大幅な改善を示すことにより,データセットの有用性を実証する。
論文 参考訳(メタデータ) (2025-03-10T06:37:42Z) - Agri-LLaVA: Knowledge-Infused Large Multimodal Assistant on Agricultural Pests and Diseases [49.782064512495495]
農業分野における最初のマルチモーダル・インストラクション・フォロー・データセットを構築した。
このデータセットは、約40万のデータエントリを持つ221種類以上の害虫と病気をカバーしている。
本稿では,農業用マルチモーダル対話システムであるAgri-LLaVAを開発するための知識注入型学習手法を提案する。
論文 参考訳(メタデータ) (2024-12-03T04:34:23Z) - Empowering Agrifood System with Artificial Intelligence: A Survey of the Progress, Challenges and Opportunities [86.89427012495457]
我々は、AI技術がアグリフードシステムをどう変え、現代のアグリフード産業に貢献するかをレビューする。
本稿では,農業,畜産,漁業において,アグリフードシステムにおけるAI手法の進歩について概説する。
我々は、AIで現代のアグリフードシステムを変革するための潜在的な課題と有望な研究機会を強調します。
論文 参考訳(メタデータ) (2023-05-03T05:16:54Z) - Domain Generalization for Crop Segmentation with Standardized Ensemble Knowledge Distillation [42.39035033967183]
サービスロボットは、周囲を理解し、野生のターゲットを識別するリアルタイム認識システムが必要です。
しかし、既存の方法はしばしば、新しい作物や環境条件への一般化において不足している。
本稿では,知識蒸留を用いた領域一般化手法を提案する。
論文 参考訳(メタデータ) (2023-04-03T14:28:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。