論文の概要: Enhancing Performance and Calibration in Quantile Hyperparameter Optimization
- arxiv url: http://arxiv.org/abs/2509.17051v1
- Date: Sun, 21 Sep 2025 12:17:06 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-23 18:58:16.091593
- Title: Enhancing Performance and Calibration in Quantile Hyperparameter Optimization
- Title(参考訳): 量子ハイパーパラメータ最適化における性能向上と校正
- Authors: Riccardo Doyle,
- Abstract要約: 等角化量子レグレッションは、これらの推定弱点に対処することができる。
この研究はこの分野の初期の成果に基づいている。
提案されたアルゴリズムは厳格にベンチマークされる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Bayesian hyperparameter optimization relies heavily on Gaussian Process (GP) surrogates, due to robust distributional posteriors and strong performance on limited training samples. GPs however underperform in categorical hyperparameter environments or when assumptions of normality, heteroskedasticity and symmetry are excessively challenged. Conformalized quantile regression can address these estimation weaknesses, while still providing robust calibration guarantees. This study builds upon early work in this area by addressing feedback covariate shift in sequential acquisition and integrating a wider range of surrogate architectures and acquisition functions. Proposed algorithms are rigorously benchmarked against a range of state of the art hyperparameter optimization methods (GP, TPE and SMAC). Findings identify quantile surrogate architectures and acquisition functions yielding superior performance to the current quantile literature, while validating the beneficial impact of conformalization on calibration and search performance.
- Abstract(参考訳): ベイジアンハイパーパラメータ最適化は、頑健な分布後部と限られたトレーニングサンプルの強い性能のため、ガウス過程(GP)サロゲートに大きく依存する。
しかし、GPは分類的ハイパーパラメータ環境では不十分であり、あるいは正規性の仮定ではヘテロスケダスティック性や対称性は過度に挑戦される。
等角化量子レグレッションはこれらの推定弱点に対処できるが、ロバストな校正保証を提供する。
本研究は, 逐次的獲得におけるフィードバックの変動に対処し, より広範なサロゲートアーキテクチャと獲得関数を統合することにより, この領域における初期の研究を基礎にしている。
提案アルゴリズムは、最先端のハイパーパラメータ最適化手法(GP、TPE、SMAC)に対して厳格にベンチマークされる。
定量化がキャリブレーションと探索性能に与える影響を検証しながら、現在の定量化文献よりも優れた性能をもたらす量子化サロゲートアーキテクチャと取得関数を同定する。
関連論文リスト
- Continual Adaptation: Environment-Conditional Parameter Generation for Object Detection in Dynamic Scenarios [54.58186816693791]
環境は時間と空間によって常に変化し、クローズドセットの仮定に基づいて訓練された物体検出器にとって重要な課題となる。
そこで本研究では,微調整過程をパラメータ生成に変換する機構を提案する。
特に,2経路LoRAベースのドメイン認識アダプタを最初に設計し,特徴をドメイン不変およびドメイン固有コンポーネントに分解する。
論文 参考訳(メタデータ) (2025-06-30T17:14:12Z) - A Unified Gaussian Process for Branching and Nested Hyperparameter
Optimization [19.351804144005744]
ディープラーニングでは、条件に依存したパラメータのチューニングが一般的に行われている。
新しいGPモデルでは、新しいカーネル関数を通じて入力変数間の依存構造が説明される。
ニューラルネットワークの一連の合成シミュレーションおよび実データ応用において、高い予測精度とより良い最適化効率が観察される。
論文 参考訳(メタデータ) (2024-01-19T21:11:32Z) - Optimizing Hyperparameters with Conformal Quantile Regression [7.316604052864345]
本稿では,観測ノイズについて最小限の仮定を行う等化量子レグレッションを活用することを提案する。
これは経験的ベンチマークでのHPO収束を早くすることを意味する。
論文 参考訳(メタデータ) (2023-05-05T15:33:39Z) - Sharp Calibrated Gaussian Processes [58.94710279601622]
キャリブレーションされたモデルを設計するための最先端のアプローチは、ガウス過程の後方分散を膨らませることに依存している。
本稿では,バニラガウス過程の後方分散にインスパイアされた計算を用いて,予測量子化を生成するキャリブレーション手法を提案する。
我々のアプローチは合理的な仮定の下で校正されたモデルが得られることを示す。
論文 参考訳(メタデータ) (2023-02-23T12:17:36Z) - Optimization of Annealed Importance Sampling Hyperparameters [77.34726150561087]
Annealed Importance Smpling (AIS) は、深層生成モデルの難易度を推定するために使われる一般的なアルゴリズムである。
本稿では、フレキシブルな中間分布を持つパラメータAISプロセスを提案し、サンプリングに少ないステップを使用するようにブリッジング分布を最適化する。
我々は, 最適化AISの性能評価を行い, 深部生成モデルの限界推定を行い, 他の推定値と比較した。
論文 参考訳(メタデータ) (2022-09-27T07:58:25Z) - Scalable Gaussian Process Hyperparameter Optimization via Coverage
Regularization [0.0]
本稿では,予測の不確かさの堅牢性を改善するために,Maternカーネルのスムーズさと長大パラメータを推定するアルゴリズムを提案する。
数値実験で示すように,高いスケーラビリティを維持しつつ,残余可能性よりも改善されたUQを実現する。
論文 参考訳(メタデータ) (2022-09-22T19:23:37Z) - Multi-objective hyperparameter optimization with performance uncertainty [62.997667081978825]
本稿では,機械学習アルゴリズムの評価における不確実性を考慮した多目的ハイパーパラメータ最適化の結果について述べる。
木構造型Parzen Estimator(TPE)のサンプリング戦略と、ガウス過程回帰(GPR)と異種雑音の訓練後に得られたメタモデルを組み合わせる。
3つの解析的テスト関数と3つのML問題の実験結果は、多目的TPEとGPRよりも改善したことを示している。
論文 参考訳(メタデータ) (2022-09-09T14:58:43Z) - Hyperboost: Hyperparameter Optimization by Gradient Boosting surrogate
models [0.4079265319364249]
現在の最先端の方法は、ランダムフォレストまたはガウスプロセスを利用してサーロゲートモデルを構築しています。
勾配向上に基づく新しいサロゲートモデルを提案する。
実験により,新しい手法は,ある程度の分類問題に対して,最先端技術より優れていることを示す。
論文 参考訳(メタデータ) (2021-01-06T22:07:19Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisyハイブリッド量子古典アルゴリズムは、ノイズ中間量子デバイスの使用を最大化する強力なツールである。
我々は、変分量子アルゴリズムで使用されるそのようなアンサーゼを「効率的な回路訓練」(PECT)と呼ぶ戦略を提案する。
すべてのアンサッツパラメータを一度に最適化する代わりに、PECTは一連の変分アルゴリズムを起動する。
論文 参考訳(メタデータ) (2020-10-01T18:14:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。