論文の概要: Graph Signal Generative Diffusion Models
- arxiv url: http://arxiv.org/abs/2509.17250v1
- Date: Sun, 21 Sep 2025 21:57:27 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-23 18:58:16.18477
- Title: Graph Signal Generative Diffusion Models
- Title(参考訳): グラフ信号生成拡散モデル
- Authors: Yigit Berkay Uslu, Samar Hadou, Sergio Rozada, Shirin Saeedi Bidokhti, Alejandro Ribeiro,
- Abstract要約: 拡散過程を用いたグラフ信号生成のためのU字型エンコーダ-デコーダグラフニューラルネットワーク(U-GNN)を提案する。
アーキテクチャは、エンコーダとデコーダパス間の接続をスキップすることで、異なる解像度でノード機能を学ぶ。
株価の確率予測における拡散モデルの有効性を実証する。
- 参考スコア(独自算出の注目度): 74.75869068073577
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce U-shaped encoder-decoder graph neural networks (U-GNNs) for stochastic graph signal generation using denoising diffusion processes. The architecture learns node features at different resolutions with skip connections between the encoder and decoder paths, analogous to the convolutional U-Net for image generation. The U-GNN is prominent for a pooling operation that leverages zero-padding and avoids arbitrary graph coarsening, with graph convolutions layered on top to capture local dependencies. This technique permits learning feature embeddings for sampled nodes at deeper levels of the architecture that remain convolutional with respect to the original graph. Applied to stock price prediction -- where deterministic forecasts struggle to capture uncertainties and tail events that are paramount -- we demonstrate the effectiveness of the diffusion model in probabilistic forecasting of stock prices.
- Abstract(参考訳): 偏波拡散過程を用いた確率グラフ信号生成のためのU字型エンコーダ-デコーダグラフニューラルネットワーク(U-GNN)を提案する。
アーキテクチャは、画像生成のための畳み込みU-Netに類似した、エンコーダとデコーダパスの間の接続をスキップすることで、異なる解像度でノードの特徴を学習する。
U-GNNは、ゼロパディングを活用し、任意のグラフ粗大化を回避し、グラフ畳み込みを上に重ねて局所的な依存関係をキャプチャするプーリング操作で有名である。
この技術は、元のグラフに関して畳み込みのままのアーキテクチャのより深いレベルで、サンプルノードの学習機能埋め込みを可能にする。
株価予測(決定論的予測が最重要事項である不確実性や末尾イベントの把握に苦慮している)に適用すると、株価の確率論的予測における拡散モデルの有効性を実証する。
関連論文リスト
- Graph Spring Neural ODEs for Link Sign Prediction [49.71046810937725]
本稿では,春の力によってモデル化されたグラフスプリングネットワーク(GSN)と呼ばれる新しいメッセージパッシング層アーキテクチャを提案する。
提案手法は,大規模グラフ上で最大28,000のノード生成時間高速化係数を持つ最先端手法に近い精度を実現する。
論文 参考訳(メタデータ) (2024-12-17T13:50:20Z) - Discrete Graph Auto-Encoder [52.50288418639075]
離散グラフオートエンコーダ(DGAE)という新しいフレームワークを導入する。
まず、置換同変オートエンコーダを用いてグラフを離散潜在ノード表現の集合に変換する。
2番目のステップでは、離散潜在表現の集合をソートし、特別に設計された自己回帰モデルを用いてそれらの分布を学習する。
論文 参考訳(メタデータ) (2023-06-13T12:40:39Z) - Deep Manifold Learning with Graph Mining [80.84145791017968]
グラフマイニングのための非段階的決定層を持つ新しいグラフ深層モデルを提案する。
提案モデルでは,現行モデルと比較して最先端性能を実現している。
論文 参考訳(メタデータ) (2022-07-18T04:34:08Z) - Increase and Conquer: Training Graph Neural Networks on Growing Graphs [116.03137405192356]
本稿では,このグラフからBernoulliをサンプリングしたグラフ上でGNNをトレーニングすることで,WNN(Graphon Neural Network)を学習する問題を考察する。
これらの結果から着想を得た大規模グラフ上でGNNを学習するアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-06-07T15:05:59Z) - Graph Fairing Convolutional Networks for Anomaly Detection [7.070726553564701]
半教師付き異常検出のためのスキップ接続付きグラフ畳み込みネットワークを提案する。
本モデルの有効性は,5つのベンチマークデータセットに対する広範な実験によって実証された。
論文 参考訳(メタデータ) (2020-10-20T13:45:47Z) - Implicit Graph Neural Networks [46.0589136729616]
Indicit Graph Neural Networks (IGNN) と呼ばれるグラフ学習フレームワークを提案する。
IGNNは一貫して長距離依存を捉え、最先端のGNNモデルより優れている。
論文 参考訳(メタデータ) (2020-09-14T06:04:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。