論文の概要: Sight Over Site: Perception-Aware Reinforcement Learning for Efficient Robotic Inspection
- arxiv url: http://arxiv.org/abs/2509.17877v1
- Date: Mon, 22 Sep 2025 15:14:02 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-23 18:58:16.454324
- Title: Sight Over Site: Perception-Aware Reinforcement Learning for Efficient Robotic Inspection
- Title(参考訳): Sight Over Site:効率的なロボット検査のための知覚認識強化学習
- Authors: Richard Kuhlmann, Jakob Wolfram, Boyang Sun, Jiaxu Xing, Davide Scaramuzza, Marc Pollefeys, Cesar Cadena,
- Abstract要約: 本研究では,認識・認識の観点からの検査を再考する。
本稿では,目標視認性を主目的とするエンドツーエンド強化学習フレームワークを提案する。
提案手法は,既存の古典的および学習的ナビゲーション手法よりも優れていることを示す。
- 参考スコア(独自算出の注目度): 57.37596278863949
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Autonomous inspection is a central problem in robotics, with applications ranging from industrial monitoring to search-and-rescue. Traditionally, inspection has often been reduced to navigation tasks, where the objective is to reach a predefined location while avoiding obstacles. However, this formulation captures only part of the real inspection problem. In real-world environments, the inspection targets may become visible well before their exact coordinates are reached, making further movement both redundant and inefficient. What matters more for inspection is not simply arriving at the target's position, but positioning the robot at a viewpoint from which the target becomes observable. In this work, we revisit inspection from a perception-aware perspective. We propose an end-to-end reinforcement learning framework that explicitly incorporates target visibility as the primary objective, enabling the robot to find the shortest trajectory that guarantees visual contact with the target without relying on a map. The learned policy leverages both perceptual and proprioceptive sensing and is trained entirely in simulation, before being deployed to a real-world robot. We further develop an algorithm to compute ground-truth shortest inspection paths, which provides a reference for evaluation. Through extensive experiments, we show that our method outperforms existing classical and learning-based navigation approaches, yielding more efficient inspection trajectories in both simulated and real-world settings. The project is avialable at https://sight-over-site.github.io/
- Abstract(参考訳): 自律的な検査はロボット工学の中心的な問題であり、産業監視から捜索救助まで幅広い応用がある。
伝統的に、検査はしばしばナビゲーションタスクに還元され、そこでは障害物を避けながら事前に定義された場所に到達することが目的である。
しかし、この定式化は実際の検査問題の一部のみを捉えている。
現実の環境では、検査対象が正確な座標に達する前によく見えるようになり、余分な動きと非効率な動きが生じる。
検査にとって重要なことは、単に目標の位置に到着するのではなく、目標が観測可能な視点でロボットを配置することである。
本研究では,認識・認識の観点からの検査を再考する。
本稿では,目標視認性を主目的として明確に組み込んだエンドツーエンド強化学習フレームワークを提案し,地図に頼らずに目標との視覚的接触を確実にする最短軌跡をロボットが発見できるようにする。
学習されたポリシーは知覚と固有感覚の両方を活用し、実世界のロボットにデプロイする前に、完全にシミュレーションで訓練される。
さらに,評価基準を提供する地上最短検査経路を計算するアルゴリズムを開発した。
実験により,本手法は既存の古典的および学習的ナビゲーション手法よりも優れており,シミュレーションと実世界の両方の環境において,より効率的な検査軌道が得られることを示す。
プロジェクトはhttps://sight-over-site.github.io/で利用可能である。
関連論文リスト
- TANGO: Traversability-Aware Navigation with Local Metric Control for Topological Goals [10.69725316052444]
ゼロショット・ロングホライゾン・ロボットナビゲーションを可能にする新しいRGBのみのオブジェクトレベルのトポロジカルナビゲーションパイプラインを提案する。
提案手法は,グローバルなトポロジカルパス計画と局所的軌跡制御を統合し,障害物を避けつつ,ロボットがオブジェクトレベルのサブゴールに向かって移動できるようにする。
シミュレーション環境と実世界の両方のテストにおいて,本手法の有効性を実証し,その堅牢性とデプロイ性を強調した。
論文 参考訳(メタデータ) (2025-09-10T15:43:32Z) - A Cross-Scene Benchmark for Open-World Drone Active Tracking [54.235808061746525]
Drone Visual Active Trackingは、視覚的な観察に基づいてモーションシステムを制御することで、対象物を自律的に追跡することを目的としている。
DATと呼ばれるオープンワールドドローンアクティブトラッキングのためのクロスシーンクロスドメインベンチマークを提案する。
また、R-VATと呼ばれる強化学習に基づくドローン追跡手法を提案する。
論文 参考訳(メタデータ) (2024-12-01T09:37:46Z) - Self-Supervised Object Goal Navigation with In-Situ Finetuning [110.6053241629366]
この研究は、探検を通じて世界の自己監督モデルを構築するエージェントを構築する。
ObjectNavエージェントのすべてのコンポーネントをトレーニングできる強力なセルフスーパービジョンのソースを特定します。
我々は,エージェントが実世界で競争力を発揮し,シミュレーションを行うことを示す。
論文 参考訳(メタデータ) (2022-12-09T03:41:40Z) - See What the Robot Can't See: Learning Cooperative Perception for Visual
Navigation [11.943412856714154]
センサをトレーニングして、関連する視点情報を移動ロボットにエンコードし、伝達する。
我々は、全てのセンサーが目標への最短経路に沿って方向を予測できるようにするという課題を克服する。
その結果,センサとロボットの通信により,SPLの最大2.0倍の改善が達成された。
論文 参考訳(メタデータ) (2022-08-01T11:37:01Z) - Object Manipulation via Visual Target Localization [64.05939029132394]
オブジェクトを操作するための訓練エージェントは、多くの課題を提起します。
本研究では,対象物体を探索する環境を探索し,位置が特定されると3次元座標を計算し,対象物が見えない場合でも3次元位置を推定する手法を提案する。
評価の結果,同じ感覚スイートにアクセス可能なモデルに比べて,成功率が3倍に向上したことが示された。
論文 参考訳(メタデータ) (2022-03-15T17:59:01Z) - Robot Localization and Navigation through Predictive Processing using
LiDAR [0.0]
本稿では,レーザーセンサを用いた位置認識とナビゲーションに応用した,予測処理にインスパイアされたアプローチの実証について述べる。
我々は自己教師型学習を通してレーザ生成モデルを学び、オンライン状態推定とナビゲーションの両方を行う。
その結果,オドメトリーの欠如による粒子フィルタとの比較では,状態推定性能が向上した。
論文 参考訳(メタデータ) (2021-09-09T09:58:00Z) - Rapid Exploration for Open-World Navigation with Latent Goal Models [78.45339342966196]
多様なオープンワールド環境における自律的な探索とナビゲーションのためのロボット学習システムについて述べる。
本手法のコアとなるのは、画像の非パラメトリックトポロジカルメモリとともに、距離と行動の学習された潜在変数モデルである。
学習方針を規則化するために情報ボトルネックを使用し、(i)目標のコンパクトな視覚的表現、(ii)一般化能力の向上、(iii)探索のための実行可能な目標をサンプリングするためのメカニズムを提供する。
論文 参考訳(メタデータ) (2021-04-12T23:14:41Z) - ViNG: Learning Open-World Navigation with Visual Goals [82.84193221280216]
視覚的目標達成のための学習に基づくナビゲーションシステムを提案する。
提案手法は,我々がvingと呼ぶシステムが,目標条件強化学習のための提案手法を上回っていることを示す。
我々は、ラストマイル配送や倉庫検査など、現実の多くのアプリケーションでViNGを実演する。
論文 参考訳(メタデータ) (2020-12-17T18:22:32Z) - Reinforcement Learning for UAV Autonomous Navigation, Mapping and Target
Detection [36.79380276028116]
本研究では,無人航空機(UAV)に低高度レーダーを装備し,未知の環境下での飛行における共同検出・マッピング・ナビゲーション問題について検討する。
目的は、マッピング精度を最大化する目的で軌道を最適化することであり、目標検出の観点からは、測定が不十分な領域を避けることである。
論文 参考訳(メタデータ) (2020-05-05T20:39:18Z) - RetinaTrack: Online Single Stage Joint Detection and Tracking [22.351109024452462]
両タスクがミッションクリティカルな自律運転におけるトラッキング・バイ・検出パラダイムに注目した。
本稿では、一般的な単一ステージのRetinaNetアプローチを改良したRetinaTrackと呼ばれる、概念的にシンプルで効率的な検出と追跡のジョイントモデルを提案する。
論文 参考訳(メタデータ) (2020-03-30T23:46:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。