論文の概要: Graph Enhanced Trajectory Anomaly Detection
- arxiv url: http://arxiv.org/abs/2509.18386v1
- Date: Mon, 22 Sep 2025 20:15:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-24 20:41:27.56376
- Title: Graph Enhanced Trajectory Anomaly Detection
- Title(参考訳): グラフ強化軌道異常検出
- Authors: Jonathan Kabala Mbuya, Dieter Pfoser, Antonios Anastasopoulos,
- Abstract要約: 軌道異常検出は、インテリジェント交通システムから都市安全・不正防止に至るまで、異常かつ予期せぬ動きパターンを特定するために不可欠である。
既存の手法では、軌跡をサンプリングされた位置の列として扱うことにより、軌道の性質とその運動空間の限られた側面しか考慮していない。
提案するグラフ拡張軌道異常検出フレームワークは,道路網のトポロジ,セグメントセマンティクス,過去の走行パターンを密に統合し,軌跡データをモデル化する。
- 参考スコア(独自算出の注目度): 23.8160784400789
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Trajectory anomaly detection is essential for identifying unusual and unexpected movement patterns in applications ranging from intelligent transportation systems to urban safety and fraud prevention. Existing methods only consider limited aspects of the trajectory nature and its movement space by treating trajectories as sequences of sampled locations, with sampling determined by positioning technology, e.g., GPS, or by high-level abstractions such as staypoints. Trajectories are analyzed in Euclidean space, neglecting the constraints and connectivity information of the underlying movement network, e.g., road or transit networks. The proposed Graph Enhanced Trajectory Anomaly Detection (GETAD) framework tightly integrates road network topology, segment semantics, and historical travel patterns to model trajectory data. GETAD uses a Graph Attention Network to learn road-aware embeddings that capture both physical attributes and transition behavior, and augments these with graph-based positional encodings that reflect the spatial layout of the road network. A Transformer-based decoder models sequential movement, while a multiobjective loss function combining autoregressive prediction and supervised link prediction ensures realistic and structurally coherent representations. To improve the robustness of anomaly detection, we introduce Confidence Weighted Negative Log Likelihood (CW NLL), an anomaly scoring function that emphasizes high-confidence deviations. Experiments on real-world and synthetic datasets demonstrate that GETAD achieves consistent improvements over existing methods, particularly in detecting subtle anomalies in road-constrained environments. These results highlight the benefits of incorporating graph structure and contextual semantics into trajectory modeling, enabling more precise and context-aware anomaly detection.
- Abstract(参考訳): 軌道異常検出は、インテリジェント交通システムから都市安全・不正防止に至るまで、異常かつ予期せぬ動きパターンを特定するために不可欠である。
既存の手法では、軌跡をサンプリングされた位置の列として扱うことにより、軌道の性質と運動空間の限られた側面のみを考慮し、位置決め技術、例えば、GPS、ステーポイントのような高レベルの抽象化によってサンプリングを行う。
軌道はユークリッド空間で解析され、基盤となる移動ネットワーク(例えば道路や交通網)の制約や接続情報を無視する。
提案するグラフ拡張軌道異常検出(GETAD)フレームワークは,道路網のトポロジ,セグメントセマンティクス,過去の旅行パターンを密に統合し,軌跡データをモデル化する。
GETADはグラフアテンションネットワークを使用して、物理的属性と遷移動作の両方をキャプチャする道路認識の埋め込みを学び、これらを、道路ネットワークの空間的レイアウトを反映したグラフベースの位置エンコーディングで拡張する。
Transformerベースのデコーダはシーケンシャルな動きをモデル化する一方、自己回帰予測と教師付きリンク予測を組み合わせた多目的損失関数は、現実的かつ構造的に一貫性のある表現を保証する。
異常検出のロバスト性を改善するために,高信頼逸脱を重視した異常スコア機能である信頼性重み付き負ログ類似度(CW NLL)を導入する。
実世界のデータセットと合成データセットの実験では、GETADは既存の手法よりも一貫した改善を実現している。
これらの結果は、グラフ構造と文脈意味論を軌跡モデリングに組み込むことの利点を強調し、より正確でコンテキスト対応な異常検出を可能にする。
関連論文リスト
- Detection of Anomalous Vehicular Traffic and Sensor Failures Using Data Clustering Techniques [0.0]
本研究では,高速道路センサからの交通流データの解析にクラスタリング手法を用いる。
複数のクラスタリング手法、すなわちパーティショニングと階層的手法を、様々な時系列表現と類似度尺度と組み合わせて検討する。
本手法は高速道路センサのリアルタイムデータに適用し,異なるクラスタリングフレームワークが交通パターン認識に与える影響を評価する。
論文 参考訳(メタデータ) (2025-04-01T15:09:39Z) - Trajectory Anomaly Detection with Language Models [21.401931052512595]
本稿では,自己回帰因果アテンションモデル(LM-TAD)を用いた軌道異常検出のための新しい手法を提案する。
トラジェクトリをトークンの列として扱うことにより、トラジェクトリ上の確率分布を学習し、高精度な異常位置の同定を可能にする。
本実験は, 合成および実世界の両方のデータセットに対するLM-TADの有効性を実証した。
論文 参考訳(メタデータ) (2024-09-18T17:33:31Z) - uTRAND: Unsupervised Anomaly Detection in Traffic Trajectories [5.6328191854587395]
画素空間から意味トポロジ的領域へ異常軌道予測の問題をシフトさせる uTRAND というフレームワークを提案する。
実世界で収集された異常軌跡のデータセットにおいて,uTRANDが他の最先端手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2024-04-19T08:46:33Z) - Detecting Anomalies in Dynamic Graphs via Memory enhanced Normality [39.476378833827184]
動的グラフにおける異常検出は、グラフ構造と属性の時間的進化によって大きな課題となる。
時空間記憶強調グラフオートエンコーダ(STRIPE)について紹介する。
STRIPEは、AUCスコアが5.8%改善し、トレーニング時間が4.62倍速く、既存の手法よりも大幅に優れている。
論文 参考訳(メタデータ) (2024-03-14T02:26:10Z) - Layout Sequence Prediction From Noisy Mobile Modality [53.49649231056857]
軌道予測は、自律運転やロボット工学などの応用における歩行者運動を理解する上で重要な役割を担っている。
現在の軌道予測モデルは、視覚的モダリティからの長い、完全な、正確に観察されたシーケンスに依存する。
本稿では,物体の障害物や視界外を,完全に視認できる軌跡を持つものと同等に扱う新しいアプローチであるLTrajDiffを提案する。
論文 参考訳(メタデータ) (2023-10-09T20:32:49Z) - Uncovering the Missing Pattern: Unified Framework Towards Trajectory
Imputation and Prediction [60.60223171143206]
軌道予測は、観測されたシーケンスから実体運動や人間の行動を理解する上で重要な作業である。
現在の方法では、観測されたシーケンスが完了したと仮定し、欠落した値の可能性を無視する。
本稿では,グラフに基づく条件変動リカレントニューラルネットワーク (GC-VRNN) の統一フレームワークを提案する。
論文 参考訳(メタデータ) (2023-03-28T14:27:27Z) - Self-Supervised Training with Autoencoders for Visual Anomaly Detection [61.62861063776813]
我々は, 正規サンプルの分布を低次元多様体で支持する異常検出において, 特定のユースケースに焦点を当てた。
我々は、訓練中に識別情報を活用する自己指導型学習体制に適応するが、通常の例のサブ多様体に焦点をあてる。
製造領域における視覚異常検出のための挑戦的なベンチマークであるMVTec ADデータセットで、最先端の新たな結果を達成する。
論文 参考訳(メタデータ) (2022-06-23T14:16:30Z) - Trajectory Prediction with Graph-based Dual-scale Context Fusion [43.51107329748957]
本稿では,Dual Scale Predictorというグラフベースの軌道予測ネットワークを提案する。
静的および動的駆動コンテキストを階層的にエンコードする。
提案したデュアルスケールコンテキスト融合ネットワークにより、DSPは正確で人間らしいマルチモーダル軌道を生成することができる。
論文 参考訳(メタデータ) (2021-11-02T13:42:16Z) - SGCN:Sparse Graph Convolution Network for Pedestrian Trajectory
Prediction [64.16212996247943]
歩行者軌道予測のためのスパースグラフ畳み込みネットワーク(SGCN)を提案する。
具体的には、SGCNはスパース指向の相互作用をスパース指向の空間グラフと明確にモデル化し、適応的な相互作用歩行者を捉える。
可視化は,歩行者の適応的相互作用とその運動特性を捉えることができることを示す。
論文 参考訳(メタデータ) (2021-04-04T03:17:42Z) - Graph Convolutional Networks for traffic anomaly [4.172516437934823]
イベント検出は輸送において重要なタスクであり、そのタスクは大規模なイベントが都市交通ネットワークの大部分を破壊した時点のポイントを検出することである。
空間的および時間的交通パターンを完全に把握することは課題であるが、効果的な異常検出には重要な役割を果たす。
我々は, 交通条件を表す有向重み付きグラフ群において, 時間間隔毎に異常を検知する新しい手法で問題を定式化する。
論文 参考訳(メタデータ) (2020-12-25T22:36:22Z) - Risk-Averse MPC via Visual-Inertial Input and Recurrent Networks for
Online Collision Avoidance [95.86944752753564]
本稿では,モデル予測制御(MPC)の定式化を拡張したオンライン経路計画アーキテクチャを提案する。
我々のアルゴリズムは、状態推定の共分散を推論するリカレントニューラルネットワーク(RNN)とオブジェクト検出パイプラインを組み合わせる。
本手法のロバスト性は, 複雑な四足歩行ロボットの力学で検証され, ほとんどのロボットプラットフォームに適用可能である。
論文 参考訳(メタデータ) (2020-07-28T07:34:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。