論文の概要: A Validation Strategy for Deep Learning Models: Evaluating and Enhancing Robustness
- arxiv url: http://arxiv.org/abs/2509.19197v1
- Date: Tue, 23 Sep 2025 16:14:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-24 20:41:27.943316
- Title: A Validation Strategy for Deep Learning Models: Evaluating and Enhancing Robustness
- Title(参考訳): ディープラーニングモデルの検証戦略:ロバスト性の評価と改善
- Authors: Abdul-Rauf Nuhu, Parham Kebria, Vahid Hemmati, Benjamin Lartey, Mahmoud Nabil Mahmoud, Abdollah Homaifar, Edward Tunstel,
- Abstract要約: そこで本研究では,学習データセットから直接,局所解析によって"弱頑な"サンプルを抽出する検証手法を提案する。
これらのサンプルは摂動に最も敏感なものであり、モデルの脆弱性の早期かつ敏感な指標として機能する。
CIFAR-10, CIFAR-100, ImageNetで学習したモデルに対して, 本手法の有効性を示す。
- 参考スコア(独自算出の注目度): 0.8532585403388676
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Data-driven models, especially deep learning classifiers often demonstrate great success on clean datasets. Yet, they remain vulnerable to common data distortions such as adversarial and common corruption perturbations. These perturbations can significantly degrade performance, thereby challenging the overall reliability of the models. Traditional robustness validation typically relies on perturbed test datasets to assess and improve model performance. In our framework, however, we propose a validation approach that extracts "weak robust" samples directly from the training dataset via local robustness analysis. These samples, being the most susceptible to perturbations, serve as an early and sensitive indicator of the model's vulnerabilities. By evaluating models on these challenging training instances, we gain a more nuanced understanding of its robustness, which informs targeted performance enhancement. We demonstrate the effectiveness of our approach on models trained with CIFAR-10, CIFAR-100, and ImageNet, highlighting how robustness validation guided by weak robust samples can drive meaningful improvements in model reliability under adversarial and common corruption scenarios.
- Abstract(参考訳): データ駆動モデル、特にディープラーニング分類器は、クリーンデータセットで大きな成功を収めることが多い。
しかし、逆境や一般的な汚職の摂動など、一般的なデータ歪みに弱いままである。
これらの摂動は性能を著しく低下させ、モデル全体の信頼性に挑戦する。
従来の堅牢性検証は通常、モデルのパフォーマンスを評価し改善するために、摂動テストデータセットに依存します。
しかし,本フレームワークでは,局所的ロバスト性解析により,トレーニングデータセットから直接"弱いロバスト"サンプルを抽出する検証手法を提案する。
これらのサンプルは摂動に最も敏感なものであり、モデルの脆弱性の早期かつ敏感な指標として機能する。
これらの挑戦的なトレーニングインスタンスのモデルを評価することで、パフォーマンス向上を目標とするロバストさをより微妙に理解することが可能になる。
我々は,CIFAR-10,CIFAR-100,ImageNetでトレーニングしたモデルに対するアプローチの有効性を実証し,弱いロバストサンプルによって導かれるロバスト性検証が,敵対的および一般的な汚職シナリオ下でモデルの信頼性を有意義に向上させることを示す。
関連論文リスト
- It Only Gets Worse: Revisiting DL-Based Vulnerability Detectors from a Practical Perspective [14.271145160443462]
VulTegraは、脆弱性検出のためのスクラッチトレーニングされたDLモデルと事前トレーニングされたDLモデルを比較する。
最先端のSOTA(State-of-the-art)検出器は、依然として低い一貫性、限られた現実世界能力、スケーラビリティの課題に悩まされている。
論文 参考訳(メタデータ) (2025-07-13T08:02:56Z) - RoHOI: Robustness Benchmark for Human-Object Interaction Detection [78.18946529195254]
ヒューマン・オブジェクト・インタラクション(HOI)検出は、コンテキスト認識支援を可能にするロボット・ヒューマン・アシストに不可欠である。
HOI検出のための最初のベンチマークを導入し、様々な課題下でモデルのレジリエンスを評価する。
我々のベンチマークであるRoHOIは、HICO-DETとV-COCOデータセットに基づく20の汚職タイプと、新しいロバストネスにフォーカスしたメトリクスを含んでいる。
論文 参考訳(メタデータ) (2025-07-12T01:58:04Z) - A Robust Adversarial Ensemble with Causal (Feature Interaction) Interpretations for Image Classification [9.945272787814941]
本稿では,識別的特徴と生成的モデルを組み合わせた深層アンサンブルモデルを提案する。
提案手法は,特徴抽出のためのボトムレベル事前学習型識別ネットワークと,逆入力分布をモデル化したトップレベル生成型分類ネットワークを統合する。
論文 参考訳(メタデータ) (2024-12-28T05:06:20Z) - Adversarial Transferability in Deep Denoising Models: Theoretical Insights and Robustness Enhancement via Out-of-Distribution Typical Set Sampling [6.189440665620872]
深層学習に基づく画像認識モデルは優れた性能を示すが、ロバストネス分析の欠如は依然として重要な懸念点である。
主な問題は、これらのモデルが敵攻撃の影響を受けやすいことである。
本稿では,新たな対人防御手法であるOut-of-Distribution typical Set Smpling Training戦略を提案する。
論文 参考訳(メタデータ) (2024-12-08T13:47:57Z) - Adversarial Robustification via Text-to-Image Diffusion Models [56.37291240867549]
アドリラルロバスト性は、ニューラルネットワークをエンコードする難しい性質として伝統的に信じられてきた。
データを使わずに敵の堅牢性を実現するために,スケーラブルでモデルに依存しないソリューションを開発した。
論文 参考訳(メタデータ) (2024-07-26T10:49:14Z) - Benchmarking Zero-Shot Robustness of Multimodal Foundation Models: A Pilot Study [61.65123150513683]
CLIPのようなマルチモーダル基盤モデルは、最先端のゼロショット結果を生成する。
これらのモデルは、ImageNetでトレーニングされた教師付きモデルのパフォーマンスを一致させることで、ロバスト性ギャップを埋めることが報告されている。
CLIPは、ベンチマーク上の教師付きImageNetモデルと比較して、かなりの堅牢性低下をもたらすことを示す。
論文 参考訳(メタデータ) (2024-03-15T17:33:49Z) - CausalAgents: A Robustness Benchmark for Motion Forecasting using Causal
Relationships [8.679073301435265]
既存のデータに摂動を適用することにより、モデルロバスト性の評価と改善のための新しいベンチマークを構築する。
我々はこれらのラベルを使用して、現場から非因果的エージェントを削除することでデータを摂動する。
非因果摂動下では, minADE の相対的な変化は, 原型と比較して25$-$38%である。
論文 参考訳(メタデータ) (2022-07-07T21:28:23Z) - Improving the Adversarial Robustness of NLP Models by Information
Bottleneck [112.44039792098579]
非破壊機能は敵によって容易に操作でき、NLPモデルを騙すことができる。
本研究では,情報ボトルネック理論を用いて,タスク固有のロバストな特徴を捕捉し,非ロバストな特徴を除去する可能性を検討する。
情報ボトルネックに基づく手法を用いてトレーニングしたモデルでは,ロバストな精度で大幅な改善が達成できることを示す。
論文 参考訳(メタデータ) (2022-06-11T12:12:20Z) - Certified Adversarial Defenses Meet Out-of-Distribution Corruptions:
Benchmarking Robustness and Simple Baselines [65.0803400763215]
この研究は、最先端のロバストモデルがアウト・オブ・ディストリビューションデータに遭遇した場合、敵のロバスト性がどのように変化を保証しているかを批判的に検証する。
本稿では,トレーニングデータのスペクトルカバレッジを改善するために,新たなデータ拡張方式であるFourierMixを提案する。
また,FourierMixの拡張により,様々なOODベンチマークにおいて,より優れたロバスト性保証を実現することが可能となる。
論文 参考訳(メタデータ) (2021-12-01T17:11:22Z) - The Evolution of Out-of-Distribution Robustness Throughout Fine-Tuning [25.85044477227461]
このベースラインに対するアウト・オブ・ディストリビューションデータより正確であるモデルは「有効ロバスト性」を示す。
より大規模なデータセットで事前トレーニングされたモデルは、収束時に消滅するトレーニング中に効果的な堅牢性を示す。
本稿では, 最先端システムに効率的なロバスト性を拡張し, 最先端モデルの分布外精度を向上させるためのいくつかの戦略について論じる。
論文 参考訳(メタデータ) (2021-06-30T06:21:42Z) - Accurate and Robust Feature Importance Estimation under Distribution
Shifts [49.58991359544005]
PRoFILEは、新しい特徴重要度推定法である。
忠実さと頑健さの両面で、最先端のアプローチよりも大幅に改善されていることを示す。
論文 参考訳(メタデータ) (2020-09-30T05:29:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。