論文の概要: Representation-based Broad Hallucination Detectors Fail to Generalize Out of Distribution
- arxiv url: http://arxiv.org/abs/2509.19372v1
- Date: Fri, 19 Sep 2025 10:54:22 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-25 20:53:19.522892
- Title: Representation-based Broad Hallucination Detectors Fail to Generalize Out of Distribution
- Title(参考訳): 分布の一般化に失敗した表現型広帯域幻覚検出器
- Authors: Zuzanna Dubanowska, Maciej Żelaszczyk, Michał Brzozowski, Paolo Mandica, Michał Karpowicz,
- Abstract要約: 幻覚検出における現在のSOTAの有効性を批判的に評価した。
RAGTruthデータセットのパフォーマンスは、主にデータとの急激な相関によって駆動される。
幻覚検出のための一連のガイドラインとその評価法を提案する。
- 参考スコア(独自算出の注目度): 1.3905422869714352
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We critically assess the efficacy of the current SOTA in hallucination detection and find that its performance on the RAGTruth dataset is largely driven by a spurious correlation with data. Controlling for this effect, state-of-the-art performs no better than supervised linear probes, while requiring extensive hyperparameter tuning across datasets. Out-of-distribution generalization is currently out of reach, with all of the analyzed methods performing close to random. We propose a set of guidelines for hallucination detection and its evaluation.
- Abstract(参考訳): 幻覚検出における現在のSOTAの有効性を批判的に評価し,RAGTruthデータセットの性能はデータとの急激な相関によって大きく左右されることを示した。
この効果を制御するために、ステート・オブ・ザ・アートは、データセットにまたがる広範なハイパーパラメータチューニングを必要としながら、教師付き線形プローブに勝るものはない。
アウト・オブ・ディストリビューションの一般化は現在、分析されたすべてのメソッドがランダムに近い動作をしているため、到達範囲外である。
幻覚検出のための一連のガイドラインとその評価法を提案する。
関連論文リスト
- ICR Probe: Tracking Hidden State Dynamics for Reliable Hallucination Detection in LLMs [50.18087419133284]
隠れた状態を活用する幻覚検出法は、主に静的および孤立した表現に焦点を当てている。
隠れ状態の更新に対するモジュールの寄与を定量化する新しいメトリック ICR Score を導入する。
本稿では,隠れ状態の層間進化を捉えた幻覚検出手法 ICR Probe を提案する。
論文 参考訳(メタデータ) (2025-07-22T11:44:26Z) - Learning Auxiliary Tasks Improves Reference-Free Hallucination Detection in Open-Domain Long-Form Generation [78.78421340836915]
オープンドメイン長文応答における参照なし幻覚検出を系統的に検討する。
その結果,内的状態は事実と幻覚的内容とを確実に区別するには不十分であることが判明した。
RATE-FTと呼ばれる新しいパラダイムを導入し、モデルが幻覚検出のメインタスクと共同で学習するための補助的なタスクで微調整を強化する。
論文 参考訳(メタデータ) (2025-05-18T07:10:03Z) - Hallucination Detection in LLMs with Topological Divergence on Attention Graphs [64.74977204942199]
幻覚(Halucination)、すなわち、事実的に誤ったコンテンツを生成することは、大きな言語モデルにとって重要な課題である。
本稿では,TOHA (Topology-based HAllucination detector) をRAG設定に導入する。
論文 参考訳(メタデータ) (2025-04-14T10:06:27Z) - Deep evolving semi-supervised anomaly detection [14.027613461156864]
本研究の目的は,連続的半教師付き異常検出(CSAD)のタスクを形式化することである。
本稿では,半教師付きデータを扱うための変分オートエンコーダ(VAE)のベースラインモデルを提案する。
論文 参考訳(メタデータ) (2024-12-01T15:48:37Z) - ARC: A Generalist Graph Anomaly Detector with In-Context Learning [62.202323209244]
ARCは汎用的なGADアプローチであり、一対一のGADモデルで様々なグラフデータセットの異常を検出することができる。
ARCはコンテキスト内学習を備えており、ターゲットデータセットからデータセット固有のパターンを直接抽出することができる。
各種領域からの複数のベンチマークデータセットに対する大規模な実験は、ARCの優れた異常検出性能、効率、一般化性を示す。
論文 参考訳(メタデータ) (2024-05-27T02:42:33Z) - Falsification before Extrapolation in Causal Effect Estimation [6.715453431174765]
個体群における因果関係は、しばしば観測データを用いて推定される。
本稿では,偏りのある観測推定を拒否するメタアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-09-27T21:47:23Z) - Self-Taught Semi-Supervised Anomaly Detection on Upper Limb X-rays [11.859913430860335]
監視されたディープネットワークは、放射線学者による多数の注釈を取る。
私たちのアプローチの合理性は、ラベルのないデータを活用するためにタスクのプリテキストタスクを使用することです。
本手法は、非監視および自己監視の異常検出設定におけるベースラインを上回っていることを示した。
論文 参考訳(メタデータ) (2021-02-19T12:32:58Z) - Dependency-based Anomaly Detection: a General Framework and Comprehensive Evaluation [33.31923133201812]
本稿では,依存性に基づく異常検出(DepAD)を提案する。
DepADは教師なしの異常検出を教師付き特徴選択と予測タスクとして再設定する。
2つのDepADアルゴリズムは、幅広いデータセットを扱うオールラウンドと優れたパフォーマーとして登場します。
論文 参考訳(メタデータ) (2020-11-13T01:39:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。