論文の概要: Self-Taught Semi-Supervised Anomaly Detection on Upper Limb X-rays
- arxiv url: http://arxiv.org/abs/2102.09895v2
- Date: Mon, 22 Feb 2021 09:21:09 GMT
- ステータス: 処理完了
- システム内更新日: 2021-02-23 11:33:05.116632
- Title: Self-Taught Semi-Supervised Anomaly Detection on Upper Limb X-rays
- Title(参考訳): 上肢X線における自己検出半監督異常検出
- Authors: Antoine Spahr, Behzad Bozorgtabar, Jean-Philippe Thiran
- Abstract要約: 監視されたディープネットワークは、放射線学者による多数の注釈を取る。
私たちのアプローチの合理性は、ラベルのないデータを活用するためにタスクのプリテキストタスクを使用することです。
本手法は、非監視および自己監視の異常検出設定におけるベースラインを上回っていることを示した。
- 参考スコア(独自算出の注目度): 11.859913430860335
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Detecting anomalies in musculoskeletal radiographs is of paramount importance
for large-scale screening in the radiology workflow. Supervised deep networks
take for granted a large number of annotations by radiologists, which is often
prohibitively very time-consuming to acquire. Moreover, supervised systems are
tailored to closed set scenarios, e.g., trained models suffer from overfitting
to previously seen rare anomalies at training. Instead, our approach's
rationale is to use task agnostic pretext tasks to leverage unlabeled data
based on a cross-sample similarity measure. Besides, we formulate a complex
distribution of data from normal class within our framework to avoid a
potential bias on the side of anomalies. Through extensive experiments, we show
that our method outperforms baselines across unsupervised and self-supervised
anomaly detection settings on a real-world medical dataset, the MURA dataset.
We also provide rich ablation studies to analyze each training stage's effect
and loss terms on the final performance.
- Abstract(参考訳): 筋骨格x線写真における異常の検出は, 放射線検査における大規模スクリーニングにおいて重要である。
監視された深層ネットワークは、放射線学者によって多くのアノテーションが与えられており、しばしば取得するのに非常に時間がかかります。
さらに、監視されたシステムはクローズドセットのシナリオに合わせて調整される。例えば、トレーニングされたモデルは、トレーニングで以前に見たことのあるまれな異常にオーバーフィットする。
代わりに、我々のアプローチの理論的根拠は、タスク非依存のプレテキストタスクを使用して、クロスサンプル類似度尺度に基づくラベルなしデータを活用することである。
さらに, フレームワーク内の正規クラスからのデータの複雑な分布を定式化し, 異常側の潜在的なバイアスを回避する。
広範な実験により,本手法は,現実世界の医療データセットである村データセットにおける非監視および自己監視の異常検出設定のベースラインを上回っていることを示した。
また,各トレーニングステージの効果と損失条件が最終パフォーマンスに与える影響を分析するために,豊富なアブレーション研究を行った。
関連論文リスト
- Anomaly Detection by Context Contrasting [57.695202846009714]
異常検出は、標準から逸脱するサンプルを特定することに焦点を当てる。
近年の自己教師型学習の進歩は、この点において大きな可能性を秘めている。
我々はコンテキスト拡張を通じて学習するCon$を提案する。
論文 参考訳(メタデータ) (2024-05-29T07:59:06Z) - Toward Generalist Anomaly Detection via In-context Residual Learning with Few-shot Sample Prompts [25.629973843455495]
Generalist Anomaly Detection (GAD)は、ターゲットデータにさらなるトレーニングを加えることなく、さまざまなアプリケーションドメインからさまざまなデータセットの異常を検出するために一般化可能な、単一の検出モデルをトレーニングすることを目的としている。
InCTRLと呼ばれるGADのための文脈内残差学習モデルを学習する新しい手法を提案する。
InCTRLは最高のパフォーマーであり、最先端の競合手法を著しく上回っている。
論文 参考訳(メタデータ) (2024-03-11T08:07:46Z) - An Iterative Method for Unsupervised Robust Anomaly Detection Under Data
Contamination [24.74938110451834]
ほとんどの深層異常検出モデルは、データセットから正規性を学ぶことに基づいている。
実際、正規性仮定は実データ分布の性質によってしばしば破られる。
このギャップを減らし、より優れた正規性表現を実現するための学習フレームワークを提案する。
論文 参考訳(メタデータ) (2023-09-18T02:36:19Z) - AGAD: Adversarial Generative Anomaly Detection [12.68966318231776]
異常検出は,異常の多様性と大規模異常データ取得の困難さにより異常の欠如に悩まされた。
本稿では,自己コントラストに基づく異常検出パラダイムであるAdversarial Generative Anomaly Detection (AGAD)を提案する。
本手法は,教師付きおよび半教師付き両方の異常検出シナリオに対して擬似異常データを生成する。
論文 参考訳(メタデータ) (2023-04-09T10:40:02Z) - Prototypical Residual Networks for Anomaly Detection and Localization [80.5730594002466]
本稿では,PRN(Prototypeal Residual Network)というフレームワークを提案する。
PRNは、異常領域の分割マップを正確に再構築するために、異常領域と正常パターンの間の様々なスケールとサイズの特徴的残差を学習する。
異常を拡大・多様化するために,見かけの相違と外観の相違を考慮に入れた様々な異常発生戦略を提示する。
論文 参考訳(メタデータ) (2022-12-05T05:03:46Z) - Explainable Deep Few-shot Anomaly Detection with Deviation Networks [123.46611927225963]
本稿では,弱い教師付き異常検出フレームワークを導入し,検出モデルを訓練する。
提案手法は,ラベル付き異常と事前確率を活用することにより,識別正規性を学習する。
我々のモデルはサンプル効率が高く頑健であり、クローズドセットとオープンセットの両方の設定において最先端の競合手法よりもはるかに優れている。
論文 参考訳(メタデータ) (2021-08-01T14:33:17Z) - Understanding the Effect of Bias in Deep Anomaly Detection [15.83398707988473]
異常検出はラベル付き異常データの不足のため、機械学習においてユニークな課題となる。
最近の研究は、追加のラベル付き異常サンプルによる深部異常検出モデルのトレーニングを増強することで、このような問題を緩和しようとするものである。
本稿では,異常検出に対するバイアス付き異常集合の効果を理解することを目的とする。
論文 参考訳(メタデータ) (2021-05-16T03:55:02Z) - Anomaly Detection on X-Rays Using Self-Supervised Aggregation Learning [16.854288765350283]
SALADはX線画像の異常検出のためのエンドツーエンドの自己監視手法である。
提案手法は、深層ニューラルネットワークが原型的局所パターンを表現することを奨励する最適化戦略に基づいている。
我々の異常スコアは、メモリバンク内の正常な原型パターンの重み付け組み合わせと類似性を測定することによって導出される。
論文 参考訳(メタデータ) (2020-10-19T20:49:34Z) - TadGAN: Time Series Anomaly Detection Using Generative Adversarial
Networks [73.01104041298031]
TadGANは、GAN(Generative Adversarial Networks)上に構築された教師なしの異常検出手法である。
時系列の時間相関を捉えるために,ジェネレータと批評家のベースモデルとしてLSTMリカレントニューラルネットワークを用いる。
提案手法の性能と一般化性を示すため,いくつかの異常スコアリング手法を検証し,最も適した手法を報告する。
論文 参考訳(メタデータ) (2020-09-16T15:52:04Z) - Toward Deep Supervised Anomaly Detection: Reinforcement Learning from
Partially Labeled Anomaly Data [150.9270911031327]
本稿では,一部のラベル付き異常事例と大規模ラベルなしデータセットを用いた異常検出の問題点について考察する。
既存の関連手法は、通常、一連の異常にまたがらない限られた異常例にのみ適合するか、ラベルのないデータから教師なしの学習を進めるかのいずれかである。
そこで本研究では,ラベル付きおよびラベルなし両方の異常の検出をエンドツーエンドに最適化する,深層強化学習に基づくアプローチを提案する。
論文 参考訳(メタデータ) (2020-09-15T03:05:39Z) - Manifolds for Unsupervised Visual Anomaly Detection [79.22051549519989]
トレーニングで必ずしも異常に遭遇しない教師なしの学習方法は、非常に有用です。
ジャイロプレーン層を用いた立体投影による超球形変分オートエンコーダ(VAE)を開発した。
工業用AIシナリオにおける実世界の実用性を実証し、精密製造および検査における視覚異常ベンチマークの最先端結果を示す。
論文 参考訳(メタデータ) (2020-06-19T20:41:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。