論文の概要: Retrieval Augmented Generation based context discovery for ASR
- arxiv url: http://arxiv.org/abs/2509.19567v1
- Date: Tue, 23 Sep 2025 20:47:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-25 20:53:19.603223
- Title: Retrieval Augmented Generation based context discovery for ASR
- Title(参考訳): ASRのための検索拡張生成に基づく文脈探索
- Authors: Dimitrios Siskos, Stavros Papadopoulos, Pablo Peso Parada, Jisi Zhang, Karthikeyan Saravanan, Anastasios Drosou,
- Abstract要約: 本研究は,ASRにおける文脈自動探索のための効率的な埋め込み型検索手法を提案する。
TED-Liumv3、Earnings21、SPGISpeechの実験では、提案手法がWERを最大17%削減することを示した。
- 参考スコア(独自算出の注目度): 9.562335554284422
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This work investigates retrieval augmented generation as an efficient strategy for automatic context discovery in context-aware Automatic Speech Recognition (ASR) system, in order to improve transcription accuracy in the presence of rare or out-of-vocabulary terms. However, identifying the right context automatically remains an open challenge. This work proposes an efficient embedding-based retrieval approach for automatic context discovery in ASR. To contextualize its effectiveness, two alternatives based on large language models (LLMs) are also evaluated: (1) large language model (LLM)-based context generation via prompting, and (2) post-recognition transcript correction using LLMs. Experiments on the TED-LIUMv3, Earnings21 and SPGISpeech demonstrate that the proposed approach reduces WER by up to 17% (percentage difference) relative to using no-context, while the oracle context results in a reduction of up to 24.1%.
- Abstract(参考訳): 本研究では、文脈認識自動音声認識(ASR)システムにおける文脈自動検出のための効率的な手法として、検索拡張生成について検討する。
しかし、適切なコンテキストを自動で識別することは、オープンな課題である。
本研究は,ASRにおける文脈自動探索のための効率的な埋め込み型検索手法を提案する。
1)大言語モデル(LLM)に基づく文脈生成と,(2)LLMを用いた認識後書き起こし補正という2つの選択肢が評価されている。
TED-Liumv3、Earnings21、SPGISpeechの実験では、提案手法により、非コンテキストの使用に対してWERを最大17%削減する一方、オラクルコンテキストは最大24.1%削減することを示した。
関連論文リスト
- SUTA-LM: Bridging Test-Time Adaptation and Language Model Rescoring for Robust ASR [58.31068047426522]
テスト時間適応(TTA)は、推論中にモデルを調整することで緩和することを目的としている。
最近の研究は、ビーム探索再構成や生成誤り訂正といった手法を用いて、TTAと外部言語モデルの組み合わせについて検討している。
本稿では,SUTAの簡易かつ効果的な拡張であるSUTA-LMを提案する。
18種類のASRデータセットの実験により、SUTA-LMは幅広い領域で堅牢な結果が得られることが示された。
論文 参考訳(メタデータ) (2025-06-10T02:50:20Z) - Self-Routing RAG: Binding Selective Retrieval with Knowledge Verbalization [97.72503890388866]
本稿では,選択的検索と知識の言語化を結合する新しいフレームワークであるSelf-Routing RAG(SR-RAG)を提案する。
SR-RAGは、LLMが外部検索と独自のパラメトリック知識の言語化を動的に決定できるようにする。
近接探索による動的知識源推定を導入し,知識源決定の精度を向上させる。
論文 参考訳(メタデータ) (2025-04-01T17:59:30Z) - SePer: Measure Retrieval Utility Through The Lens Of Semantic Perplexity Reduction [20.6787276745193]
本稿では、RAGフレームワーク内の情報ゲインのレンズを通して、検索品質を測定する自動評価手法を提案する。
検索の利便性を,検索後の意味的難易度を低減する程度で定量化する。
論文 参考訳(メタデータ) (2025-03-03T12:37:34Z) - Learning to Filter Context for Retrieval-Augmented Generation [75.18946584853316]
生成モデルは、部分的にまたは完全に無関係な経路が与えられた出力を生成するために要求される。
FILCOは、語彙と情報理論のアプローチに基づいて有用なコンテキストを特定する。
テスト時に検索したコンテキストをフィルタリングできるコンテキストフィルタリングモデルをトレーニングする。
論文 参考訳(メタデータ) (2023-11-14T18:41:54Z) - Using External Off-Policy Speech-To-Text Mappings in Contextual
End-To-End Automated Speech Recognition [19.489794740679024]
本稿では,外部知識の活用の可能性について検討する。
提案手法では,音声の音声埋め込みと意味的テキスト埋め込みを併用して,ASRに偏りを生じさせる。
LibiriSpeechと社内音声アシスタント/検索データセットの実験により、提案手法により、最大1KのGPU時間でドメイン適応時間を短縮できることが示された。
論文 参考訳(メタデータ) (2023-01-06T22:32:50Z) - Towards Improved Room Impulse Response Estimation for Speech Recognition [53.04440557465013]
遠距離場自動音声認識(ASR)におけるブラインドルームインパルス応答(RIR)推定システムを提案する。
まず、改良されたRIR推定と改善されたASR性能の関連性について、ニューラルネットワークを用いたRIR推定器の評価を行った。
次に、残響音声からRIR特徴を符号化し、符号化された特徴からRIRを構成するGANベースのアーキテクチャを提案する。
論文 参考訳(メタデータ) (2022-11-08T00:40:27Z) - Generation-Augmented Retrieval for Open-domain Question Answering [134.27768711201202]
GAR(Generation-Augmented Retrieval)は、オープンドメインの質問に答える機能である。
クエリーに対して多様なコンテキストを生成することは、結果の融合が常により良い検索精度をもたらすので有益であることを示す。
GARは、抽出読取装置を備えた場合、抽出QA設定の下で、自然質問およびトリビアQAデータセットの最先端性能を達成する。
論文 参考訳(メタデータ) (2020-09-17T23:08:01Z) - Joint Contextual Modeling for ASR Correction and Language Understanding [60.230013453699975]
言語理解(LU)と協調してASR出力の文脈的言語補正を行うマルチタスクニューラルアプローチを提案する。
そこで本研究では,市販のASRおよびLUシステムの誤差率を,少量のドメイン内データを用いてトレーニングしたジョイントモデルと比較して14%削減できることを示した。
論文 参考訳(メタデータ) (2020-01-28T22:09:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。