論文の概要: Graph-based Neural Space Weather Forecasting
- arxiv url: http://arxiv.org/abs/2509.19605v1
- Date: Tue, 23 Sep 2025 21:53:35 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-25 20:53:19.621356
- Title: Graph-based Neural Space Weather Forecasting
- Title(参考訳): グラフに基づくニューラルスペース気象予測
- Authors: Daniel Holmberg, Ivan Zaitsev, Markku Alho, Ioanna Bouri, Fanni Franssila, Haewon Jeong, Minna Palmroth, Teemu Roos,
- Abstract要約: 我々は、地球近傍の空間条件を自動回帰予測するために、Vlasiatorデータに基づいて訓練されたグラフベースのニューラルエミュレータを導入する。
本研究では,素早い決定論的予測の達成方法と,生成モデルを用いて予測の不確実性を捉えるアンサンブルを生成する方法を示す。
- 参考スコア(独自算出の注目度): 3.7612198046810814
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurate space weather forecasting is crucial for protecting our increasingly digital infrastructure. Hybrid-Vlasov models, like Vlasiator, offer physical realism beyond that of current operational systems, but are too computationally expensive for real-time use. We introduce a graph-based neural emulator trained on Vlasiator data to autoregressively predict near-Earth space conditions driven by an upstream solar wind. We show how to achieve both fast deterministic forecasts and, by using a generative model, produce ensembles to capture forecast uncertainty. This work demonstrates that machine learning offers a way to add uncertainty quantification capability to existing space weather prediction systems, and make hybrid-Vlasov simulation tractable for operational use.
- Abstract(参考訳): 正確な宇宙天気予報は、ますますデジタル化されつつあるインフラを保護するために不可欠である。
VlasiatorのようなハイブリッドVlasovモデルは、現在の運用システム以上の物理的な現実性を提供するが、リアルタイム利用には計算コストがかかりすぎる。
我々は、Vlasiatorデータに基づいて訓練されたグラフベースのニューラルエミュレータを導入し、上流の太陽風によって駆動される地球近傍の空間状態を自動回帰予測する。
本研究では,素早い決定論的予測を実現する方法と,生成モデルを用いて予測の不確実性を捉えるアンサンブルを生成する方法を示す。
この研究は、機械学習が既存の宇宙天気予報システムに不確実な定量化機能を加える方法を提供し、ハイブリッド・ブラソフシミュレーションを運用用途に利用できるようにすることを実証している。
関連論文リスト
- Data driven weather forecasts trained and initialised directly from observations [1.44556167750856]
Skilful Machine Learned weather forecasts has challenged our approach to numerical weather prediction。
データ駆動システムは、過去の気象の長い歴史記録から学ぶことによって、将来の天気を予測するために訓練されている。
そこで我々は,ニューラルネットワークをトレーニングし,過去の観測から将来の天気を予測する新しい手法を提案する。
論文 参考訳(メタデータ) (2024-07-22T12:23:26Z) - Weather Prediction with Diffusion Guided by Realistic Forecast Processes [49.07556359513563]
気象予報に拡散モデル(DM)を適用した新しい手法を提案する。
提案手法は,同一のモデリングフレームワークを用いて,直接予測と反復予測の両方を実現できる。
我々のモデルの柔軟性と制御性は、一般の気象コミュニティにとってより信頼性の高いDLシステムに力を与えます。
論文 参考訳(メタデータ) (2024-02-06T21:28:42Z) - Towards an end-to-end artificial intelligence driven global weather forecasting system [57.5191940978886]
我々は,地球規模の気象変動に対するAIに基づくデータ同化モデル,すなわちAdasを提案する。
我々は,アダスが地球観測を同化して高品質な分析を行い,長期にわたって安定して運用できることを実証した。
この手法を現実のシナリオに適用するのは,私たちが初めてです。
論文 参考訳(メタデータ) (2023-12-18T09:05:28Z) - Learning Robust Precipitation Forecaster by Temporal Frame Interpolation [65.5045412005064]
本研究では,空間的不一致に対するレジリエンスを示す頑健な降水予測モデルを構築した。
提案手法は,textit4cast'23コンペティションの移行学習リーダーボードにおいて,textit1位を確保したモデルにおいて,予測精度が大幅に向上した。
論文 参考訳(メタデータ) (2023-11-30T08:22:08Z) - Interpolation of mountain weather forecasts by machine learning [0.0]
本稿では,山間部における将来の気象を機械学習で補間する手法を提案する。
本研究は,日本の山岳地域に着目し,主に光GBMを機械学習モデルとして,気温と降水量の予測を行う。
論文 参考訳(メタデータ) (2023-08-27T01:32:23Z) - SEEDS: Emulation of Weather Forecast Ensembles with Diffusion Models [13.331224394143117]
不確かさの定量化は意思決定に不可欠である。
天気予報の不確実性を表す主要なアプローチは、予測の集合を生成することです。
本稿では,これらの予測を歴史的データから学習した深部生成拡散モデルを用いてエミュレートし,計算コストを補正することを提案する。
論文 参考訳(メタデータ) (2023-06-24T22:00:06Z) - LOPR: Latent Occupancy PRediction using Generative Models [49.15687400958916]
LiDARの生成した占有グリッドマップ(L-OGM)は、頑丈な鳥の視線シーンを表現している。
本稿では,学習空間内での表現学習と予測という,占有率予測を分離する枠組みを提案する。
論文 参考訳(メタデータ) (2022-10-03T22:04:00Z) - Predicting Future Occupancy Grids in Dynamic Environment with
Spatio-Temporal Learning [63.25627328308978]
本稿では,将来の占有予測を生成するための時間的予測ネットワークパイプラインを提案する。
現在のSOTAと比較して、我々の手法は3秒の長い水平線での占有を予測している。
我々は、さらなる研究を支援するために、nulisに基づくグリッド占有データセットを公開します。
論文 参考訳(メタデータ) (2022-05-06T13:45:32Z) - Forecasting large-scale circulation regimes using deformable
convolutional neural networks and global spatiotemporal climate data [86.1450118623908]
変形可能な畳み込みニューラルネットワーク(deCNN)に基づく教師あり機械学習手法の検討
今後1~15日にわたって北大西洋-欧州の気象条件を予測した。
より広い視野で見れば、通常の畳み込みニューラルネットワークよりも5~6日を超えるリードタイムでかなり優れた性能を発揮することが分かる。
論文 参考訳(メタデータ) (2022-02-10T11:37:00Z) - SmaAt-UNet: Precipitation Nowcasting using a Small Attention-UNet
Architecture [5.28539620288341]
データ駆動型ニューラルネットワークのアプローチにより,正確な降水量を推定できることが示唆された。
オランダ地域の降水マップとフランスのクラウドカバレッジのバイナリ画像を用いて、実際のデータセットに対する我々のアプローチを評価した。
論文 参考訳(メタデータ) (2020-07-08T20:33:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。