論文の概要: Convex Regression with a Penalty
- arxiv url: http://arxiv.org/abs/2509.19788v1
- Date: Wed, 24 Sep 2025 06:19:21 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-25 20:53:19.703879
- Title: Convex Regression with a Penalty
- Title(参考訳): 罰則による凸回帰
- Authors: Eunji Lim,
- Abstract要約: 未知凸回帰関数 $f_0: Omega subset mathbbRd rightarrow mathbbR$ を$n$のノイズ観測の集合から推定する一般的な方法は、二乗誤差の和を最小化する凸関数に収まることである。
本稿では,2乗誤差の和に対して上界$s_n$を強制しながら,下位値のペナルティを最小化することにより,このオーバーフィッティングを回避するために,$f_0$の新たな推定器を導入する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: A common way to estimate an unknown convex regression function $f_0: \Omega \subset \mathbb{R}^d \rightarrow \mathbb{R}$ from a set of $n$ noisy observations is to fit a convex function that minimizes the sum of squared errors. However, this estimator is known for its tendency to overfit near the boundary of $\Omega$, posing significant challenges in real-world applications. In this paper, we introduce a new estimator of $f_0$ that avoids this overfitting by minimizing a penalty on the subgradient while enforcing an upper bound $s_n$ on the sum of squared errors. The key advantage of this method is that $s_n$ can be directly estimated from the data. We establish the uniform almost sure consistency of the proposed estimator and its subgradient over $\Omega$ as $n \rightarrow \infty$ and derive convergence rates. The effectiveness of our estimator is illustrated through its application to estimating waiting times in a single-server queue.
- Abstract(参考訳): 未知凸回帰関数 $f_0: \Omega \subset \mathbb{R}^d \rightarrow \mathbb{R}$ を$n$のノイズ観測の集合から推定する一般的な方法は、二乗誤差の和を最小化する凸関数に収まることである。
しかし、この推定器は$\Omega$の境界付近で過度に適合する傾向があることで知られており、現実世界のアプリケーションでは大きな課題を招いている。
本稿では,2乗誤差の和に対して上界$s_n$を強制しながら,下位値のペナルティを最小化することにより,この過度化を回避する新しい推定器について紹介する。
この方法の主な利点は、データから直接$s_n$を推定できることである。
我々は、提案された推定器のほぼ確実に整合性を確立し、その次数は$\Omega$ を $n \rightarrow \infty$ とし、収束率を導出する。
我々の推定器の有効性は、単一のサーバキューで待ち時間を推定するために、その応用を通して説明される。
関連論文リスト
- Nearly Minimax Optimal Regret for Learning Linear Mixture Stochastic
Shortest Path [80.60592344361073]
線形混合遷移カーネルを用いた最短経路(SSP)問題について検討する。
エージェントは繰り返し環境と対話し、累積コストを最小化しながら特定の目標状態に到達する。
既存の作業は、イテレーションコスト関数の厳密な下限や、最適ポリシーに対する期待長の上限を仮定することが多い。
論文 参考訳(メタデータ) (2024-02-14T07:52:00Z) - Robust Nonparametric Regression under Poisoning Attack [13.470899588917716]
敵攻撃者は、$N$のトレーニングデータセットから最大$q$のサンプル値を変更することができる。
初期解法はハマー損失最小化に基づくM推定器である。
最後の見積もりは、任意の$q$に対してほぼ最小値であり、最大$ln N$ factorまでである。
論文 参考訳(メタデータ) (2023-05-26T09:33:17Z) - Estimating the minimizer and the minimum value of a regression function
under passive design [72.85024381807466]
最小値 $boldsymbolx*$ と最小値 $f*$ を滑らかで凸な回帰関数 $f$ で推定する新しい手法を提案する。
2次リスクと$boldsymbolz_n$の最適化誤差、および$f*$を推定するリスクについて、漸近的でない上界を導出する。
論文 参考訳(メタデータ) (2022-11-29T18:38:40Z) - A Law of Robustness beyond Isoperimetry [84.33752026418045]
我々は、任意の分布上でニューラルネットワークパラメータを補間する頑健性の低い$Omega(sqrtn/p)$を証明した。
次に、$n=mathrmpoly(d)$のとき、スムーズなデータに対する過度なパラメータ化の利点を示す。
我々は、$n=exp(omega(d))$ のとき、$O(1)$-Lipschitz の頑健な補間関数の存在を否定する。
論文 参考訳(メタデータ) (2022-02-23T16:10:23Z) - AI without networks [0.0]
我々は、生成モデリングを取り入れたAIのためのネットワークフリーフレームワークを開発する。
我々は、この枠組みを、民族学、制御理論、数学の3つの異なる分野の例で示す。
また、生成AIによる倫理的法的課題に対処するために、この枠組みに基づいて容易に計算された信用割当手法を提案する。
論文 参考訳(メタデータ) (2021-06-07T05:50:02Z) - Optimal Mean Estimation without a Variance [103.26777953032537]
本研究では,データ生成分布の分散が存在しない環境での重み付き平均推定問題について検討する。
最小の信頼区間を$n,d,delta$の関数として得る推定器を設計する。
論文 参考訳(メタデータ) (2020-11-24T22:39:21Z) - Out-of-sample error estimate for robust M-estimators with convex penalty [5.33024001730262]
凸ペナルティで正規化された堅牢な$M$-estimatorsに対して、一般的なサンプル外誤差推定を提案する。
一般的な微分可能損失関数 $psi$ は $psi=rho'$ が 1-Lipschitz であるときに許される。
論文 参考訳(メタデータ) (2020-08-26T21:50:41Z) - Optimal Robust Linear Regression in Nearly Linear Time [97.11565882347772]
学習者が生成モデル$Y = langle X,w* rangle + epsilon$から$n$のサンプルにアクセスできるような高次元頑健な線形回帰問題について検討する。
i) $X$ is L4-L2 hypercontractive, $mathbbE [XXtop]$ has bounded condition number and $epsilon$ has bounded variance, (ii) $X$ is sub-Gaussian with identity second moment and $epsilon$ is
論文 参考訳(メタデータ) (2020-07-16T06:44:44Z) - Agnostic Learning of a Single Neuron with Gradient Descent [92.7662890047311]
期待される正方形損失から、最も適合した単一ニューロンを学習することの問題点を考察する。
ReLUアクティベーションでは、我々の人口リスク保証は$O(mathsfOPT1/2)+epsilon$である。
ReLUアクティベーションでは、我々の人口リスク保証は$O(mathsfOPT1/2)+epsilon$である。
論文 参考訳(メタデータ) (2020-05-29T07:20:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。