論文の概要: Causal Inference under Threshold Manipulation: Bayesian Mixture Modeling and Heterogeneous Treatment Effects
- arxiv url: http://arxiv.org/abs/2509.19814v1
- Date: Wed, 24 Sep 2025 06:52:53 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-25 20:53:19.710008
- Title: Causal Inference under Threshold Manipulation: Bayesian Mixture Modeling and Heterogeneous Treatment Effects
- Title(参考訳): 閾値操作下における因果推論:ベイズ混合モデルと不均一処理効果
- Authors: Kohsuke Kubota, Shonosuke Sugasawa,
- Abstract要約: しきい値操作下での因果効果を推定するための新しい枠組みを提案する。
主な考え方は、観測された消費分布を2つの分布の混合としてモデル化することである。
以上より,大試料下での因果効果の後方収縮が観察された。
- 参考スコア(独自算出の注目度): 0.25782420501870296
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Many marketing applications, including credit card incentive programs, offer rewards to customers who exceed specific spending thresholds to encourage increased consumption. Quantifying the causal effect of these thresholds on customers is crucial for effective marketing strategy design. Although regression discontinuity design is a standard method for such causal inference tasks, its assumptions can be violated when customers, aware of the thresholds, strategically manipulate their spending to qualify for the rewards. To address this issue, we propose a novel framework for estimating the causal effect under threshold manipulation. The main idea is to model the observed spending distribution as a mixture of two distributions: one representing customers strategically affected by the threshold, and the other representing those unaffected. To fit the mixture model, we adopt a two-step Bayesian approach consisting of modeling non-bunching customers and fitting a mixture model to a sample around the threshold. We show posterior contraction of the resulting posterior distribution of the causal effect under large samples. Furthermore, we extend this framework to a hierarchical Bayesian setting to estimate heterogeneous causal effects across customer subgroups, allowing for stable inference even with small subgroup sample sizes. We demonstrate the effectiveness of our proposed methods through simulation studies and illustrate their practical implications using a real-world marketing dataset.
- Abstract(参考訳): クレジットカードインセンティブプログラムを含む多くのマーケティングアプリケーションは、消費の増加を促すために特定の支出基準を超えた顧客に報酬を提供する。
顧客に対するこれらの閾値の因果効果の定量化は、効果的なマーケティング戦略設計に不可欠である。
回帰不連続設計は、そのような因果推論タスクの標準的な方法であるが、その仮定は、顧客が閾値を認識して、報酬の資格を得るために自分の支出を戦略的に操作した場合に違反する可能性がある。
そこで本研究では,しきい値操作時の因果効果を推定するための新しい枠組みを提案する。
主な考え方は、観測された消費分布を、2つの分布の混合としてモデル化することである。
混合モデルに適合するため,非バンドル顧客をモデル化し,しきい値付近のサンプルに混合モデルを適用する2段階ベイズ的手法を採用する。
以上の結果より,大試料下における因果効果の後方分布の後方収縮が示唆された。
さらに、この枠組みを階層的ベイズ的セッティングに拡張し、顧客サブグループ間での不均一因果効果を推定し、小さなサブグループサンプルサイズであっても安定した推論を可能にする。
本稿では,シミュレーション研究を通じて提案手法の有効性を実証し,実世界のマーケティングデータセットを用いてその実用的意味を説明する。
関連論文リスト
- Robust Optimization with Diffusion Models for Green Security [43.64383757489721]
グリーンセキュリティでは、効果的パトロールを計画するためには、密猟、違法伐採、違法漁などの敵の行動を予測する必要がある。
本稿では,その強い分布適合性を利用した逆挙動モデリングのための条件付き拡散モデルを提案する。
混合戦略の混合戦略を導入し, 正確なサンプリングを行うために, ツイスト型シークエンシャルモンテカルロ (SMC) サンプリング装置を用いる。
論文 参考訳(メタデータ) (2025-02-19T05:30:46Z) - Microfoundation Inference for Strategic Prediction [26.277259491014163]
本稿では,人口に対する予測モデルの長期的影響をカプセル化した分布図の学習手法を提案する。
具体的には,エージェントの応答をコストユーティリティ問題としてモデル化し,そのコストを見積もる。
本稿では,この推定値の収束率と,クレジット・スコアリング・データセットの実証実験による品質評価について述べる。
論文 参考訳(メタデータ) (2024-11-13T19:37:49Z) - Model-based Causal Bayesian Optimization [74.78486244786083]
乗算重み付き因果ベイズ最適化のための最初のアルゴリズム(CBO-MW)を提案する。
グラフ関連の量に自然に依存するCBO-MWに対する後悔の限界を導出する。
我々の実験は、共有モビリティシステムにおいて、ユーザの需要パターンを学習するためにCBO-MWをどのように使用できるかの現実的なデモを含む。
論文 参考訳(メタデータ) (2023-07-31T13:02:36Z) - G$^2$uardFL: Safeguarding Federated Learning Against Backdoor Attacks
through Attributed Client Graph Clustering [116.4277292854053]
Federated Learning (FL)は、データ共有なしで協調的なモデルトレーニングを提供する。
FLはバックドア攻撃に弱いため、有害なモデル重みがシステムの整合性を損なう。
本稿では、悪意のあるクライアントの識別を属性グラフクラスタリング問題として再解釈する保護フレームワークであるG$2$uardFLを提案する。
論文 参考訳(メタデータ) (2023-06-08T07:15:04Z) - Delving into Identify-Emphasize Paradigm for Combating Unknown Bias [52.76758938921129]
同定精度を高めるため,有効バイアス強調スコアリング法(ECS)を提案する。
また, マイニングされたバイアスアライメントとバイアスコンプリケート試料のコントリビューションのバランスをとるために, 勾配アライメント(GA)を提案する。
様々な環境で複数のデータセットで実験を行い、提案されたソリューションが未知のバイアスの影響を軽減することを実証した。
論文 参考訳(メタデータ) (2023-02-22T14:50:24Z) - Achieving Counterfactual Fairness for Causal Bandit [18.077963117600785]
期待される報酬を最大化するために、各ステップでアイテムを推薦する方法を研究します。
次に, 対実的個人的公正性を達成するためのフェア因果バンドイット(F-UCB)を提案する。
論文 参考訳(メタデータ) (2021-09-21T23:44:48Z) - A Twin Neural Model for Uplift [59.38563723706796]
Upliftは条件付き治療効果モデリングの特定のケースです。
相対リスクのベイズ解釈との関連性を利用して定義した新たな損失関数を提案する。
本提案手法は,シミュレーション設定の最先端と大規模ランダム化実験による実データとの競合性を示す。
論文 参考訳(メタデータ) (2021-05-11T16:02:39Z) - A Perceptual Distortion Reduction Framework for Adversarial Perturbation
Generation [58.6157191438473]
2つの観点からこの問題に対処するための知覚的歪み低減フレームワークを提案する。
知覚的歪みの制約を提案し,それを敵攻撃の客観的機能に追加し,知覚的歪みと攻撃成功率を共同で最適化する。
論文 参考訳(メタデータ) (2021-05-01T15:08:10Z) - Deconfounding Scores: Feature Representations for Causal Effect
Estimation with Weak Overlap [140.98628848491146]
推定対象の偏りを伴わずに高い重なりを生じさせる,デコンファウンディングスコアを導入する。
分離スコアは観測データで識別可能なゼロ共分散条件を満たすことを示す。
特に,この手法が標準正規化の魅力的な代替となることを示す。
論文 参考訳(メタデータ) (2021-04-12T18:50:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。