論文の概要: Thinking Augmented Pre-training
- arxiv url: http://arxiv.org/abs/2509.20186v3
- Date: Fri, 26 Sep 2025 08:29:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-29 12:12:20.333117
- Title: Thinking Augmented Pre-training
- Title(参考訳): 予習の強化を考える
- Authors: Liang Wang, Nan Yang, Shaohan Huang, Li Dong, Furu Wei,
- Abstract要約: 拡張事前学習は、自動生成された思考軌跡でテキストを増強する普遍的な方法論である。
本稿では,既存のテキストデータを思考トラジェクトリで拡張することにより,大規模言語モデル(LLM)トレーニングのデータ効率を向上させるための,シンプルでスケーラブルなアプローチを提案する。
- 参考スコア(独自算出の注目度): 88.04395622064708
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper introduces a simple and scalable approach to improve the data efficiency of large language model (LLM) training by augmenting existing text data with thinking trajectories. The compute for pre-training LLMs has been growing at an unprecedented rate, while the availability of high-quality data remains limited. Consequently, maximizing the utility of available data constitutes a significant research challenge. A primary impediment is that certain high-quality tokens are difficult to learn given a fixed model capacity, as the underlying rationale for a single token can be exceptionally complex and deep. To address this issue, we propose Thinking augmented Pre-Training (TPT), a universal methodology that augments text with automatically generated thinking trajectories. Such augmentation effectively increases the volume of the training data and makes high-quality tokens more learnable through step-by-step reasoning and decomposition. We apply TPT across diverse training configurations up to $100$B tokens, encompassing pre-training with both constrained and abundant data, as well as mid-training from strong open-source checkpoints. Experimental results indicate that our method substantially improves the performance of LLMs across various model sizes and families. Notably, TPT enhances the data efficiency of LLM pre-training by a factor of $3$. For a $3$B parameter model, it improves the post-training performance by over $10\%$ on several challenging reasoning benchmarks.
- Abstract(参考訳): 本稿では,既存のテキストデータを思考トラジェクトリで拡張することにより,大規模言語モデル(LLM)トレーニングのデータ効率を向上させるための,シンプルでスケーラブルなアプローチを提案する。
LLMの事前学習の計算は前例のない速度で増加しているが、高品質なデータの入手は依然として限られている。
その結果、利用可能なデータの有用性を最大化することは、重要な研究課題となっている。
第一の障害は、特定の高品質なトークンが、固定されたモデルのキャパシティから学習することが難しいことである。
この問題に対処するために,自動生成された思考軌跡をテキストに拡張する汎用手法である思考強化事前学習(TPT)を提案する。
このような拡張は、トレーニングデータのボリュームを効果的に増加させ、ステップバイステップの推論と分解により、高品質なトークンをより学習しやすくする。
制約付きデータと豊富なデータの両方による事前トレーニングや、強力なオープンソースチェックポイントからの中間トレーニングを含む、さまざまなトレーニング構成にTPTを適用します。
実験結果から,LLMの性能はモデルサイズや家族によって大幅に向上することが示唆された。
特にTPTは、LCM事前トレーニングのデータ効率を3ドル(約3,500円)で向上させる。
3$Bのパラメータモデルでは、いくつかの困難な推論ベンチマークにおいて、トレーニング後のパフォーマンスを10\%以上改善する。
関連論文リスト
- Reinforcement Learning on Pre-Training Data [55.570379963147424]
我々は,大規模言語モデル(LLM)を最適化するための新しい訓練時間スケーリングパラダイムである,事前学習データ(R)の強化学習を紹介する。
Rは、有意義な軌道を自律的に探索し、事前学習データから学び、強化学習(RL)を通してその能力を向上させる。
複数のモデルにわたる一般領域および数学的推論ベンチマークの広範な実験は、Rの有効性を検証した。
論文 参考訳(メタデータ) (2025-09-23T17:10:40Z) - Towards High Data Efficiency in Reinforcement Learning with Verifiable Reward [54.708851958671794]
オフラインとオンラインの両方のデータ選択のための最適化戦略を組み合わせた,データ効率のよいポリシ最適化パイプラインを提案する。
オフラインフェーズでは、多様性、影響、適切な難易度に基づいて、トレーニングサンプルの高品質なサブセットをキュレートする。
オンラインRLVRトレーニングにおいて、探索可能性の低いサンプルを動的にフィルタリングするサンプルレベルの探索性指標を導入する。
論文 参考訳(メタデータ) (2025-09-01T10:04:20Z) - LearnAlign: Reasoning Data Selection for Reinforcement Learning in Large Language Models Based on Improved Gradient Alignment [14.655048266761783]
強化学習(Reinforcement Learning, RL)は、LLMの推論能力を高めるための重要な技術となっているが、そのデータ非効率性は依然として大きなボトルネックとなっている。
本稿では、RL後学習のための学習可能および代表的トレーニング推論データを知的に選択するLearnerAlignを提案する。
3つの数学的推論ベンチマークによる実験により,本手法はトレーニングデータ要求を大幅に低減することが示された。
論文 参考訳(メタデータ) (2025-06-13T06:05:58Z) - Reasoning to Learn from Latent Thoughts [45.59740535714148]
そこで本研究では,テキスト生成プロセスの根底にある潜在的思考を明示的にモデル化し,推論することにより,事前学習データの効率を大幅に向上できることを示す。
1B LMは、少なくとも3回の反復でその性能をブートストラップし、生データに基づいてトレーニングされたベースラインを大幅に上回ることを示す。
推論スケーリングとEMイテレーションのメリットは、データ制約付き事前トレーニングをスケールする新たな機会を示唆している。
論文 参考訳(メタデータ) (2025-03-24T16:41:23Z) - The First Few Tokens Are All You Need: An Efficient and Effective Unsupervised Prefix Fine-Tuning Method for Reasoning Models [69.798277882245]
大規模言語モデルの推論効率を向上させるために,Unsupervised Prefix Fine-Tuning (UPFT)を導入した。
UPFTはラベル付きデータや徹底的なサンプリングの必要性を取り除く。
実験の結果,UPFTは教師付き手法の性能と一致していることがわかった。
論文 参考訳(メタデータ) (2025-03-04T18:56:03Z) - Accelerating Large Language Model Pretraining via LFR Pedagogy: Learn, Focus, and Review [50.78587571704713]
Learn-Focus-Review(LFR)は、モデルの学習進捗に適応する動的トレーニングアプローチである。
LFRは、データブロック(トークンのシーケンス)にわたるモデルの学習パフォーマンスを追跡し、データセットの困難な領域を再検討する。
フルデータセットでトレーニングされたベースラインモデルと比較して、LFRは一貫して低いパープレキシティと高い精度を達成した。
論文 参考訳(メタデータ) (2024-09-10T00:59:18Z) - To Repeat or Not To Repeat: Insights from Scaling LLM under Token-Crisis [50.31589712761807]
大規模言語モデル(LLM)は、事前トレーニング中にトークンに悩まされていることで知られており、Web上の高品質なテキストデータは、LSMのスケーリング制限に近づいている。
本研究では,事前学習データの再学習の結果について検討し,モデルが過度に適合する可能性が示唆された。
第2に, マルチエポック劣化の原因となる要因について検討し, データセットのサイズ, モデルパラメータ, トレーニング目標など, 重要な要因について検討した。
論文 参考訳(メタデータ) (2023-05-22T17:02:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。