論文の概要: A Contrastive Learning Framework for Breast Cancer Detection
- arxiv url: http://arxiv.org/abs/2509.20474v1
- Date: Wed, 24 Sep 2025 18:43:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-26 20:58:12.540478
- Title: A Contrastive Learning Framework for Breast Cancer Detection
- Title(参考訳): 乳癌検診のためのコントラスト学習フレームワーク
- Authors: Samia Saeed, Khuram Naveed,
- Abstract要約: そこで本研究では,ラベル付きデータセットの少ないContrastive Learning(CL)フレームワークを提案する。
Inbreast と MIAS のベンチマークデータから乳癌検出の精度は96.7%であった。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Breast cancer, the second leading cause of cancer-related deaths globally, accounts for a quarter of all cancer cases [1]. To lower this death rate, it is crucial to detect tumors early, as early-stage detection significantly improves treatment outcomes. Advances in non-invasive imaging techniques have made early detection possible through computer-aided detection (CAD) systems which rely on traditional image analysis to identify malignancies. However, there is a growing shift towards deep learning methods due to their superior effectiveness. Despite their potential, deep learning methods often struggle with accuracy due to the limited availability of large-labeled datasets for training. To address this issue, our study introduces a Contrastive Learning (CL) framework, which excels with smaller labeled datasets. In this regard, we train Resnet-50 in semi supervised CL approach using similarity index on a large amount of unlabeled mammogram data. In this regard, we use various augmentation and transformations which help improve the performance of our approach. Finally, we tune our model on a small set of labelled data that outperforms the existing state of the art. Specifically, we observed a 96.7% accuracy in detecting breast cancer on benchmark datasets INbreast and MIAS.
- Abstract(参考訳): 世界第2位のがん関連死亡原因である乳癌は、全がん症例の4分の1を占めています[1]。
この死亡率を下げるためには、早期発見が治療成績を大幅に改善するため、早期発見が不可欠である。
非侵襲イメージング技術の進歩は、従来の画像解析に頼って悪性腫瘍を識別するコンピュータ支援検出(CAD)システムを通じて早期発見を可能にした。
しかし、その効果が優れているため、深層学習へのシフトが増えている。
その可能性にもかかわらず、ディープラーニング手法はトレーニング用の大規模ラベル付きデータセットが限られているため、正確性に苦慮することが多い。
そこで本研究では,ラベル付きデータセットの少ないContrastive Learning(CL)フレームワークを提案する。
そこで本研究では,大量の未ラベルマンモグラムデータに対する類似度指標を用いて,半教師付きCLアプローチでResnet-50を訓練する。
この点において、私たちはアプローチの性能向上に役立つ様々な拡張と変換を使用します。
最後に、既存の最先端技術よりも優れたラベル付きデータの小さなセットにモデルをチューニングする。
Inbreast と MIAS のベンチマークデータから乳癌の検出精度は96.7%であった。
関連論文リスト
- Boosting Medical Image-based Cancer Detection via Text-guided Supervision from Reports [68.39938936308023]
本研究では, 高精度ながん検出を実現するための新しいテキスト誘導学習法を提案する。
本手法は,大規模プレトレーニングVLMによる臨床知識の活用により,一般化能力の向上が期待できる。
論文 参考訳(メタデータ) (2024-05-23T07:03:38Z) - Enhancing Clinically Significant Prostate Cancer Prediction in T2-weighted Images through Transfer Learning from Breast Cancer [71.91773485443125]
転送学習は、よりリッチなデータを持つドメインから取得した機能を活用して、限られたデータを持つドメインのパフォーマンスを向上させるテクニックである。
本稿では,T2強調画像における乳癌からの転移学習による臨床的に有意な前立腺癌予知の改善について検討する。
論文 参考訳(メタデータ) (2024-05-13T15:57:27Z) - Improving Breast Cancer Grade Prediction with Multiparametric MRI Created Using Optimized Synthetic Correlated Diffusion Imaging [71.91773485443125]
乳がん治療計画において、グレーディングは重要な役割を担っている。
現在の腫瘍グレード法では、患者から組織を抽出し、ストレス、不快感、医療費の上昇につながる。
本稿では,CDI$s$の最適化による乳癌の診断精度の向上について検討する。
論文 参考訳(メタデータ) (2024-05-13T15:48:26Z) - Improved Breast Cancer Diagnosis through Transfer Learning on
Hematoxylin and Eosin Stained Histology Images [3.7498611358320733]
本研究では,最新のBRACS染色画像を用いて乳癌腫瘍の分類を行った。
我々は、Xception、EfficientNet、ResNet50、InceptionResNetといった、ImageNet重みに基づいて事前訓練された様々なディープラーニングモデルを用いて実験を行った。
論文 参考訳(メタデータ) (2023-09-15T20:16:17Z) - A Combined PCA-MLP Network for Early Breast Cancer Detection [0.0]
我々は、患者が乳がんに直面するかどうかを検出するために、異なる機械学習アルゴリズムを研究した。
われわれの4層PCAネットワークは、BCCDデータセットの平均90.48%で100%の精度を得た。
論文 参考訳(メタデータ) (2022-06-18T06:17:40Z) - EMT-NET: Efficient multitask network for computer-aided diagnosis of
breast cancer [58.720142291102135]
乳腺腫瘍の分類と分別を同時に行うための,効率的で軽量な学習アーキテクチャを提案する。
腫瘍分類ネットワークにセグメンテーションタスクを組み込むことにより,腫瘍領域に着目したバックボーンネットワークで表現を学習する。
腫瘍分類の精度、感度、特異性はそれぞれ88.6%、94.1%、85.3%である。
論文 参考訳(メタデータ) (2022-01-13T05:24:40Z) - Open-Set Recognition of Breast Cancer Treatments [91.3247063132127]
オープンセット認識は、テストサンプルをトレーニングや"未知"から既知のクラスの1つに分類することで、分類タスクを一般化する
乳がん患者データに対して,画像データセットの最先端結果を実現するガウス混合変分オートエンコーダモデルを適用した。
より正確でロバストな分類結果が得られ,F1の平均値が24.5%上昇したばかりでなく,臨床環境への展開性の観点からも,オープンセット認識の再検討を行った。
論文 参考訳(メタデータ) (2022-01-09T04:35:55Z) - Synthesizing lesions using contextual GANs improves breast cancer
classification on mammograms [0.4297070083645048]
本稿では, マンモグラムの病変を現実的に合成し, 除去するデータ拡張のための, GANモデルを提案する。
自己注意と半教師付き学習コンポーネントにより、U-netベースのアーキテクチャは高解像度(256x256px)の出力を生成することができる。
論文 参考訳(メタデータ) (2020-05-29T21:23:00Z) - Learning from Suspected Target: Bootstrapping Performance for Breast
Cancer Detection in Mammography [6.323318523772466]
対象領域の選択と訓練を行う新しいサンプリング手順とともに,新しいトップ可能性損失を導入する。
まず,提案手法をプライベートな高密度マンモグラフィーデータセット上で検証する。
以上の結果から,本手法は偽陽性率を大幅に低減し,質量型癌検出では0.25倍の特異性を示した。
論文 参考訳(メタデータ) (2020-03-01T09:04:24Z) - Stan: Small tumor-aware network for breast ultrasound image segmentation [68.8204255655161]
本研究では,小腫瘍認識ネットワーク(Small tumor-Aware Network,STAN)と呼ばれる新しいディープラーニングアーキテクチャを提案する。
提案手法は, 乳腺腫瘍の分節化における最先端のアプローチよりも優れていた。
論文 参考訳(メタデータ) (2020-02-03T22:25:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。