論文の概要: FlowXpert: Context-Aware Flow Embedding for Enhanced Traffic Detection in IoT Network
- arxiv url: http://arxiv.org/abs/2509.20861v1
- Date: Thu, 25 Sep 2025 07:52:58 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-26 20:58:12.770803
- Title: FlowXpert: Context-Aware Flow Embedding for Enhanced Traffic Detection in IoT Network
- Title(参考訳): FlowXpert: IoTネットワークにおけるトラフィック検出の強化を目的としたコンテキスト対応フロー埋め込み
- Authors: Chao Zha, Haolin Pan, Bing Bai, Jiangxing Wu, Ruyun Zhang,
- Abstract要約: IoT(Internet of Things)環境では、多数のデバイス間の継続的なインタラクションによって複雑な動的ネットワークトラフィックが生成される。
機械学習(ML)ベースのトラフィック検出技術は、ネットワークセキュリティを確保する上で重要なコンポーネントである。
- 参考スコア(独自算出の注目度): 7.30584204219718
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the Internet of Things (IoT) environment, continuous interaction among a large number of devices generates complex and dynamic network traffic, which poses significant challenges to rule-based detection approaches. Machine learning (ML)-based traffic detection technology, capable of identifying anomalous patterns and potential threats within this traffic, serves as a critical component in ensuring network security. This study first identifies a significant issue with widely adopted feature extraction tools (e.g., CICMeterFlow): the extensive use of time- and length-related features leads to high sparsity, which adversely affects model convergence. Furthermore, existing traffic detection methods generally lack an embedding mechanism capable of efficiently and comprehensively capturing the semantic characteristics of network traffic. To address these challenges, we propose a novel feature extraction tool that eliminates traditional time and length features in favor of context-aware semantic features related to the source host, thus improving the generalizability of the model. In addition, we design an embedding training framework that integrates the unsupervised DBSCAN clustering algorithm with a contrastive learning strategy to effectively capture fine-grained semantic representations of traffic. Extensive empirical evaluations are conducted on the real-world Mawi data set to validate the proposed method in terms of detection accuracy, robustness, and generalization. Comparative experiments against several state-of-the-art (SOTA) models demonstrate the superior performance of our approach. Furthermore, we confirm its applicability and deployability in real-time scenarios.
- Abstract(参考訳): IoT(Internet of Things)環境では、多数のデバイス間の継続的なインタラクションによって複雑な動的ネットワークトラフィックが発生し、ルールベースの検出アプローチには大きな課題が生じる。
機械学習(ML)ベースのトラフィック検出技術は、このトラフィック内の異常パターンと潜在的な脅威を識別することができる。
本研究は,CICMeterFlowなど,広く採用されている特徴抽出ツールにおいて,時間的特徴と長さ的特徴の広範な使用が,モデルの収束に悪影響を及ぼすという重要な課題を最初に挙げる。
さらに,既存のトラフィック検出手法では,ネットワークトラフィックのセマンティック特性を効率よく,包括的に把握できる埋め込み機構が欠如している。
これらの課題に対処するために,提案する特徴抽出ツールでは,従来の時間と長さの特徴を排除し,ソースホストに関連するコンテキスト認識のセマンティックな特徴を優先し,モデルの一般化性を向上させる。
さらに、教師なしDBSCANクラスタリングアルゴリズムとコントラスト学習戦略を統合して、トラフィックのきめ細かいセマンティック表現を効果的にキャプチャする埋め込み学習フレームワークを設計する。
実世界のMawiデータセットを用いて大規模な実験評価を行い,検出精度,堅牢性,一般化の点で提案手法の有効性を検証した。
いくつかの最新技術(SOTA)モデルとの比較実験により,本手法の優れた性能を示す。
さらに、リアルタイムシナリオにおける適用性とデプロイ性についても確認する。
関連論文リスト
- Self-Supervised Transformer-based Contrastive Learning for Intrusion Detection Systems [1.1265248232450553]
本稿では,生パケット列上の一般化可能な侵入検出のための自己教師付きコントラスト学習手法を提案する。
本フレームワークは,既存のNetFlow自己管理手法と比較して,優れた性能を示す。
我々のモデルは,ラベル付き限られたデータを用いた教師付き侵入検知のための強力なベースラインを提供する。
論文 参考訳(メタデータ) (2025-05-12T13:42:00Z) - Research on Cloud Platform Network Traffic Monitoring and Anomaly Detection System based on Large Language Models [5.524069089627854]
本稿では,大規模言語モデル(LLM)に基づくネットワークトラフィック監視と異常検出システムを提案する。
事前訓練された大言語モデルは、予測可能なネットワークトラフィックを分析し予測し、異常検出層は時間性とコンテキストを考慮する。
その結果,設計したモデルは,検出精度と計算効率において従来の手法よりも優れていた。
論文 参考訳(メタデータ) (2025-04-22T07:42:07Z) - Multi-view Correlation-aware Network Traffic Detection on Flow Hypergraph [5.64836465356865]
ネットワークトラフィック検出のための多視点相関対応フレームワークFlowIDを提案する。
FlowIDは時間的およびインタラクションの認識を通じてマルチビュートラフィックの特徴をキャプチャし、ハイパーグラフエンコーダはフロー間の高次関係をさらに探求する。
FlowIDは,様々なネットワークシナリオにおいて,既存の手法よりも精度,堅牢性,一般化に優れることを示す。
論文 参考訳(メタデータ) (2025-01-15T06:17:06Z) - NetFlowGen: Leveraging Generative Pre-training for Network Traffic Dynamics [72.95483148058378]
我々は,NetFlowレコードからのトラフィックデータのみを用いて,トラフィックダイナミクスをキャプチャする汎用機械学習モデルを事前学習することを提案する。
ネットワーク特徴表現の統一,未ラベルの大規模トラフィックデータ量からの学習,DDoS攻撃検出における下流タスクのテストといった課題に対処する。
論文 参考訳(メタデータ) (2024-12-30T00:47:49Z) - Convolutional Neural Network Design and Evaluation for Real-Time Multivariate Time Series Fault Detection in Spacecraft Attitude Sensors [41.94295877935867]
本稿では,ドローンのような宇宙船の加速度計および慣性測定ユニット内のスタンプ値を検出するための新しい手法を提案する。
マルチチャネル畳み込みニューラルネットワーク(CNN)は、マルチターゲット分類を実行し、センサ内の障害を独立に検出するために使用される。
ネットワークの異常を効果的に検出し,システムレベルでの回復動作をトリガーする統合手法を提案する。
論文 参考訳(メタデータ) (2024-10-11T09:36:38Z) - A Framework for the Systematic Assessment of Anomaly Detectors in Time-Sensitive Automotive Networks [0.4077787659104315]
本稿では,異常検出アルゴリズムの再現性,比較性,迅速な評価を可能にするアセスメントフレームワークを提案する。
実例検出機構を評価し,TSNトラフィックフローと異常型の組み合わせによって検出性能がどう影響するかを明らかにする。
論文 参考訳(メタデータ) (2024-05-02T14:29:42Z) - Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
我々は、分散化された侵入検知システムの共有モデル(IDS)を協調訓練するために、フェデレートラーニング(FL)を導入する。
FLEKDは従来のモデル融合法よりも柔軟な凝集法を実現する。
実験の結果,提案手法は,速度と性能の両面で,局所訓練と従来のFLよりも優れていた。
論文 参考訳(メタデータ) (2024-01-22T14:16:37Z) - Contextualizing MLP-Mixers Spatiotemporally for Urban Data Forecast at Scale [54.15522908057831]
本稿では,STTD予測を大規模に行うためのコンピュータ・ミクサーの適応版を提案する。
我々の結果は、この単純な効率の良いソリューションが、いくつかのトラフィックベンチマークでテストした場合、SOTAベースラインに匹敵する可能性があることを驚くほど示している。
本研究は, 実世界のSTTD予測において, 簡便な有効モデルの探索に寄与する。
論文 参考訳(メタデータ) (2023-07-04T05:19:19Z) - Unsupervised Abnormal Traffic Detection through Topological Flow
Analysis [1.933681537640272]
悪意のある流れの トポロジカル接続コンポーネントは 利用されていない
本稿では,教師なし異常検出アルゴリズムにおける接続グラフ機能の利用を容易にするための簡易な手法を提案する。
論文 参考訳(メタデータ) (2022-05-14T18:52:49Z) - A Lightweight, Efficient and Explainable-by-Design Convolutional Neural
Network for Internet Traffic Classification [9.365794791156972]
本稿では、インターネットトラフィック分類のための新しい軽量・効率的・eXplainable-by-design畳み込みニューラルネットワーク(LEXNet)を提案する。
LEXNetは(軽量で効率の良い目的のために)新しい残留ブロックと(説明可能性のために)プロトタイプ層に依存している。
商用グレードのデータセットに基づいて、LEXNetは最先端のニューラルネットワークと同じ精度を維持することに成功した。
論文 参考訳(メタデータ) (2022-02-11T10:21:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。