論文の概要: GraphSearch: An Agentic Deep Searching Workflow for Graph Retrieval-Augmented Generation
- arxiv url: http://arxiv.org/abs/2509.22009v2
- Date: Tue, 30 Sep 2025 07:25:35 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-01 12:20:10.373126
- Title: GraphSearch: An Agentic Deep Searching Workflow for Graph Retrieval-Augmented Generation
- Title(参考訳): GraphSearch: グラフ検索拡張ジェネレーションのためのエージェントディープ検索ワークフロー
- Authors: Cehao Yang, Xiaojun Wu, Xueyuan Lin, Chengjin Xu, Xuhui Jiang, Yuanliang Sun, Jia Li, Hui Xiong, Jian Guo,
- Abstract要約: textscGraphSearchは、GraphRAGの二重チャネル検索を備えた新しいエージェントディープ検索ワークフローである。
textscGraphSearchは、従来の戦略よりも解答精度と生成品質を一貫して改善する。
- 参考スコア(独自算出の注目度): 35.65907480060404
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph Retrieval-Augmented Generation (GraphRAG) enhances factual reasoning in LLMs by structurally modeling knowledge through graph-based representations. However, existing GraphRAG approaches face two core limitations: shallow retrieval that fails to surface all critical evidence, and inefficient utilization of pre-constructed structural graph data, which hinders effective reasoning from complex queries. To address these challenges, we propose \textsc{GraphSearch}, a novel agentic deep searching workflow with dual-channel retrieval for GraphRAG. \textsc{GraphSearch} organizes the retrieval process into a modular framework comprising six modules, enabling multi-turn interactions and iterative reasoning. Furthermore, \textsc{GraphSearch} adopts a dual-channel retrieval strategy that issues semantic queries over chunk-based text data and relational queries over structural graph data, enabling comprehensive utilization of both modalities and their complementary strengths. Experimental results across six multi-hop RAG benchmarks demonstrate that \textsc{GraphSearch} consistently improves answer accuracy and generation quality over the traditional strategy, confirming \textsc{GraphSearch} as a promising direction for advancing graph retrieval-augmented generation.
- Abstract(参考訳): Graph Retrieval-Augmented Generation (GraphRAG)は、グラフベースの表現を通して知識を構造的にモデル化することで、LLMにおける事実推論を強化する。
しかし、既存のGraphRAGアプローチでは、すべての重要な証拠を表面化できない浅い検索と、複雑なクエリによる効果的な推論を妨げる事前構築された構造グラフデータの非効率利用の2つの限界に直面している。
これらの課題に対処するために、GraphRAGの二重チャネル検索を備えた新しいエージェントディープ検索ワークフローである \textsc{GraphSearch} を提案する。
\textsc{GraphSearch}は、検索プロセスを6つのモジュールからなるモジュラーフレームワークに編成し、マルチターンインタラクションと反復推論を可能にする。
さらに \textsc{GraphSearch} では,チャンクベースのテキストデータに対するセマンティッククエリと構造グラフデータに対するリレーショナルクエリを発行するデュアルチャネル検索方式を採用している。
6つのマルチホップRAGベンチマークによる実験結果から,従来の手法よりも回答精度と生成品質が一貫して向上していることが示され,グラフ検索拡張生成の前進に向けた有望な方向として,‘textsc{GraphSearch}が確認された。
関連論文リスト
- Query-Aware Graph Neural Networks for Enhanced Retrieval-Augmented Generation [0.0]
検索強化生成(RAG)のための新しいグラフニューラルネットワークアーキテクチャを提案する。
提案手法は,テキストチャンク間の逐次的および意味的関係をキャプチャする,エピソードごとの知識グラフを構築する。
ユーザクエリに基づいてグラフの関連部分に動的にフォーカスするクエリ誘導プーリングを備えた拡張グラフアテンションネットワークを導入する。
論文 参考訳(メタデータ) (2025-07-25T19:42:27Z) - XGraphRAG: Interactive Visual Analysis for Graph-based Retrieval-Augmented Generation [16.068460356582648]
本研究では、RAG開発者がGraphRAGの重要なリコールを特定するのに役立つ視覚分析フレームワークを提案する。
我々は,ユーザ分析プロセスを容易にするために,インタラクティブな視覚化のセットを取り入れたプロトタイプシステムであるXGraphRAGを開発した。
論文 参考訳(メタデータ) (2025-06-10T09:14:30Z) - Align-GRAG: Reasoning-Guided Dual Alignment for Graph Retrieval-Augmented Generation [75.9865035064794]
大きな言語モデル(LLM)は目覚ましい能力を示しているが、幻覚や時代遅れの情報といった問題に苦戦している。
Retrieval-augmented Generation (RAG) は、情報検索システム(IR)を用いて、外部知識のLLM出力を基底にすることで、これらの問題に対処する。
本稿では、検索後句における新しい推論誘導二重アライメントフレームワークであるAlign-GRAGを提案する。
論文 参考訳(メタデータ) (2025-05-22T05:15:27Z) - RGL: A Graph-Centric, Modular Framework for Efficient Retrieval-Augmented Generation on Graphs [58.10503898336799]
完全なRAGパイプラインをシームレスに統合するモジュラーフレームワークであるRAG-on-Graphs Library(RGL)を紹介した。
RGLは、さまざまなグラフフォーマットをサポートし、必須コンポーネントの最適化実装を統合することで、重要な課題に対処する。
評価の結果,RGLはプロトタイピングプロセスの高速化だけでなく,グラフベースRAGシステムの性能や適用性の向上も図っている。
論文 参考訳(メタデータ) (2025-03-25T03:21:48Z) - KET-RAG: A Cost-Efficient Multi-Granular Indexing Framework for Graph-RAG [21.62060252772377]
Graph-RAGは、Large Language Model (LLM)ベースの質問応答における検索を改善するために、テキストチャンクから知識グラフを構築する。
既存のGraph-RAGシステムでは、テキストチャンクの関連性に基づいてKNNグラフを構築しているが、この粗い粒度のアプローチでは、テキスト内のエンティティ関係をキャプチャできない。
KET-RAGは,インデクシングコストを低減しつつ,良好な結果の精度を確保するための多粒性インデックスフレームワークである。
論文 参考訳(メタデータ) (2025-02-13T13:16:16Z) - CG-RAG: Research Question Answering by Citation Graph Retrieval-Augmented LLMs [9.718354494802002]
CG-RAG(Contextualized Graph Retrieval-Augmented Generation)は、グラフ構造に疎密な検索信号を統合する新しいフレームワークである。
まず、引用グラフの文脈グラフ表現を提案し、文書内および文書間の明示的および暗黙的な接続を効果的にキャプチャする。
次にLexical-Semantic Graph Retrieval(LeSeGR)を提案する。
第3に,検索したグラフ構造化情報を利用した文脈認識生成手法を提案する。
論文 参考訳(メタデータ) (2025-01-25T04:18:08Z) - Retrieval-Augmented Generation with Graphs (GraphRAG) [84.29507404866257]
Retrieval-augmented Generation (RAG) は、追加情報を取得することによって下流タスクの実行を向上させる強力な技術である。
グラフは、その固有の「エッジで接続されたノード」の性質により、巨大な異種情報と関係情報を符号化する。
従来のRAGとは異なり、多種多様な形式とドメイン固有の関係知識のようなグラフ構造化データのユニークさは、異なるドメインでGraphRAGを設計する際、ユニークで重要な課題を生じさせる。
論文 参考訳(メタデータ) (2024-12-31T06:59:35Z) - TOBUGraph: Knowledge Graph-Based Retrieval for Enhanced LLM Performance Beyond RAG [3.8704987495086542]
TOBUGraphは、構造化されていないデータから知識グラフを構築するグラフベースの検索フレームワークである。
構造化された知識とデータ間の多様な関係を抽出し、RAGのテキストとテキストの類似性を超えた。
ToBUGraphの有効性を実証する。TOBUは、個人記憶の組織化と検索のための実世界のアプリケーションである。
論文 参考訳(メタデータ) (2024-12-06T22:05:39Z) - Towards Lightweight Graph Neural Network Search with Curriculum Graph Sparsification [48.334100429553644]
本稿では,有意義なグラフデータを通じて重要なサブアーキテクチャを識別する結合グラフデータとアーキテクチャ機構を設計することを提案する。
最適軽量グラフニューラルネット(GNN)を探索するために,グラフスペーシングとネットワーク・プルーニング(GASSIP)法を用いた軽量グラフニューラル・アーキテクチャ・サーチを提案する。
本手法は,探索したGNNとスペーサーグラフのモデルパラメータを半分以下にすることで,オンパーあるいはそれ以上高いノード分類性能を実現する。
論文 参考訳(メタデータ) (2024-06-24T06:53:37Z) - Reinforcement Learning Based Query Vertex Ordering Model for Subgraph
Matching [58.39970828272366]
グラフマッチングアルゴリズムは、クエリグラフの埋め込みをデータグラフGに列挙する。
マッチング順序は、これらのバックトラックに基づくサブグラフマッチングアルゴリズムの時間効率において重要な役割を果たす。
本稿では,Reinforcement Learning (RL) と Graph Neural Networks (GNN) 技術を適用して,グラフマッチングアルゴリズムの高品質なマッチング順序を生成する。
論文 参考訳(メタデータ) (2022-01-25T00:10:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。