論文の概要: NIFTY: a Non-Local Image Flow Matching for Texture Synthesis
- arxiv url: http://arxiv.org/abs/2509.22318v1
- Date: Fri, 26 Sep 2025 13:19:26 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-29 20:57:54.446032
- Title: NIFTY: a Non-Local Image Flow Matching for Texture Synthesis
- Title(参考訳): NIFTY:テクスチャ合成のための非局所画像フローマッチング
- Authors: Pierrick Chatillon, Julien Rabin, David Tschumperlé,
- Abstract要約: NIFTYは、畳み込みニューラルネットワークでトレーニングされた拡散モデルに関する最近の知見と、パッチベースのテクスチャ最適化技術を組み合わせたハイブリッドフレームワークである。
NIFTYは、非局所パッチマッチングに基づいて構築された、非パラメトリックフローマッチングモデルである。
- 参考スコア(独自算出の注目度): 0.688204255655161
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper addresses the problem of exemplar-based texture synthesis. We introduce NIFTY, a hybrid framework that combines recent insights on diffusion models trained with convolutional neural networks, and classical patch-based texture optimization techniques. NIFTY is a non-parametric flow-matching model built on non-local patch matching, which avoids the need for neural network training while alleviating common shortcomings of patch-based methods, such as poor initialization or visual artifacts. Experimental results demonstrate the effectiveness of the proposed approach compared to representative methods from the literature. Code is available at https://github.com/PierrickCh/Nifty.git
- Abstract(参考訳): 本稿では, 先進的なテクスチャ合成の問題に対処する。
我々は、畳み込みニューラルネットワークでトレーニングされた拡散モデルに関する最近の知見と、古典的なパッチベースのテクスチャ最適化技術を組み合わせたハイブリッドフレームワークNIFTYを紹介する。
NIFTYは、非局所的なパッチマッチングに基づいて構築された非パラメトリックフローマッチングモデルであり、ニューラルネットワークトレーニングの必要を回避し、初期化や視覚的アーティファクトなどのパッチベースのメソッドの一般的な欠点を軽減する。
実験により,提案手法の有効性を文献の代表的な方法と比較した。
コードはhttps://github.com/PierrickCh/Nifty.gitで入手できる。
関連論文リスト
- PNeRFLoc: Visual Localization with Point-based Neural Radiance Fields [54.8553158441296]
統一された点ベース表現に基づく新しい視覚的ローカライゼーションフレームワーク PNeRFLoc を提案する。
一方、PNeRFLocは2次元特徴点と3次元特徴点をマッチングして初期ポーズ推定をサポートする。
一方、レンダリングベースの最適化を用いた新しいビュー合成によるポーズ改善も実現している。
論文 参考訳(メタデータ) (2023-12-17T08:30:00Z) - IntrinsicNeRF: Learning Intrinsic Neural Radiance Fields for Editable
Novel View Synthesis [90.03590032170169]
内在性ニューラルレンダリング法に内在性分解を導入した内在性ニューラルレイディアンス場(IntrinsicNeRF)を提案する。
そこで,本研究では,オブジェクト固有・ルームスケールシーンと合成・実単語データの両方を用いて,一貫した本質的な分解結果が得られることを示す。
論文 参考訳(メタデータ) (2022-10-02T22:45:11Z) - Adaptive Convolutional Dictionary Network for CT Metal Artifact
Reduction [62.691996239590125]
本稿では,金属人工物削減のための適応畳み込み辞書ネットワーク(ACDNet)を提案する。
我々のACDNetは、トレーニングデータを介して、アーティファクトフリーCT画像の事前を自動で学習し、入力されたCT画像ごとに表現カーネルを適応的に調整することができる。
本手法は,モデルに基づく手法の明確な解釈可能性を継承し,学習に基づく手法の強力な表現能力を維持する。
論文 参考訳(メタデータ) (2022-05-16T06:49:36Z) - An alternative approach to train neural networks using monotone
variational inequality [22.320632565424745]
本稿では,モノトーンベクトル場を用いたニューラルネットワークトレーニングの代替手法を提案する。
我々のアプローチは、事前訓練されたニューラルネットワークのより効率的な微調整に利用できる。
論文 参考訳(メタデータ) (2022-02-17T19:24:20Z) - Neural Knitworks: Patched Neural Implicit Representation Networks [1.0470286407954037]
画像合成を実現する自然画像の暗黙的表現学習のためのアーキテクチャであるKnitworkを提案する。
私たちの知る限りでは、画像のインペインティング、超解像化、デノイングといった合成作業に適した座標ベースのパッチの実装は、これが初めてである。
その結果, ピクセルではなくパッチを用いた自然な画像のモデリングにより, 忠実度が高い結果が得られた。
論文 参考訳(メタデータ) (2021-09-29T13:10:46Z) - NeRF in detail: Learning to sample for view synthesis [104.75126790300735]
ニューラルレイディアンス場(NeRF)法は目覚ましい新しいビュー合成を実証している。
この作業では、バニラ粗大なアプローチの明確な制限に対処します -- パフォーマンスに基づいており、手元にあるタスクのエンドツーエンドをトレーニングしていません。
我々は、サンプルの提案と、そのネットワークにおける重要性を学習し、そのニューラルネットワークアーキテクチャに対する複数の代替案を検討し比較する、微分可能なモジュールを導入する。
論文 参考訳(メタデータ) (2021-06-09T17:59:10Z) - Local Critic Training for Model-Parallel Learning of Deep Neural
Networks [94.69202357137452]
そこで我々は,局所的批判訓練と呼ばれる新しいモデル並列学習手法を提案する。
提案手法は,畳み込みニューラルネットワーク(CNN)とリカレントニューラルネットワーク(RNN)の両方において,階層群の更新プロセスの分離に成功したことを示す。
また,提案手法によりトレーニングされたネットワークを構造最適化に利用できることを示す。
論文 参考訳(メタデータ) (2021-02-03T09:30:45Z) - NITES: A Non-Parametric Interpretable Texture Synthesis Method [41.13585191073405]
本研究では,NITES法と呼ばれる非パラメトリック解釈可能なテクスチャ合成法を提案する。
NITESは数学的に透明で、訓練や推論において効率的である。
論文 参考訳(メタデータ) (2020-09-02T22:52:44Z) - A Generative Model for Texture Synthesis based on Optimal Transport
between Feature Distributions [8.102785819558978]
任意の大きさの新しいテクスチャをオンザフライで合成できるフィードフォワードニューラルネットワークを、我々のフレームワークを使って学習する方法を示す。
我々のフレームワークを使ってフィードフォワードニューラルネットワークを学習し、任意のサイズの新しいテクスチャを高速に合成する方法を示します。
論文 参考訳(メタデータ) (2020-06-19T13:32:55Z) - MSE-Optimal Neural Network Initialization via Layer Fusion [68.72356718879428]
ディープニューラルネットワークは、さまざまな分類と推論タスクに対して最先端のパフォーマンスを達成する。
グラデーションと非進化性の組み合わせは、学習を新しい問題の影響を受けやすいものにする。
確率変数を用いて学習した深層ネットワークの近傍層を融合する手法を提案する。
論文 参考訳(メタデータ) (2020-01-28T18:25:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。