論文の概要: Exploratory Semantic Reliability Analysis of Wind Turbine Maintenance Logs using Large Language Models
- arxiv url: http://arxiv.org/abs/2509.22366v1
- Date: Fri, 26 Sep 2025 14:00:20 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-29 20:57:54.480388
- Title: Exploratory Semantic Reliability Analysis of Wind Turbine Maintenance Logs using Large Language Models
- Title(参考訳): 大規模言語モデルを用いた風力発電保守ログの探索的セマンティック信頼性解析
- Authors: Max Malyi, Jonathan Shek, Andre Biscaya,
- Abstract要約: 本稿では、より複雑な推論タスクに現代大規模言語モデル(LLM)を活用する際のギャップについて論じる。
我々は,LLMを用いた探索的フレームワークを導入し,分類を超えて意味分析を行う。
以上の結果から,LSMは,テキスト情報や行動可能な専門家レベルの仮説を合成するためにラベル付けを超えて,強力な"信頼性共パイロット"として機能できることが示唆された。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A wealth of operational intelligence is locked within the unstructured free-text of wind turbine maintenance logs, a resource largely inaccessible to traditional quantitative reliability analysis. While machine learning has been applied to this data, existing approaches typically stop at classification, categorising text into predefined labels. This paper addresses the gap in leveraging modern large language models (LLMs) for more complex reasoning tasks. We introduce an exploratory framework that uses LLMs to move beyond classification and perform deep semantic analysis. We apply this framework to a large industrial dataset to execute four analytical workflows: failure mode identification, causal chain inference, comparative site analysis, and data quality auditing. The results demonstrate that LLMs can function as powerful "reliability co-pilots," moving beyond labelling to synthesise textual information and generate actionable, expert-level hypotheses. This work contributes a novel and reproducible methodology for using LLMs as a reasoning tool, offering a new pathway to enhance operational intelligence in the wind energy sector by unlocking insights previously obscured in unstructured data.
- Abstract(参考訳): 豊富な運用インテリジェンスは、従来の量的信頼性分析にはほとんどアクセスできない、風力タービンの保守ログの構造化されていない自由テキストの中に閉じ込められている。
このデータには機械学習が適用されているが、既存のアプローチは通常、テキストを定義済みのラベルに分類して、分類を停止する。
本稿では、より複雑な推論タスクに現代大規模言語モデル(LLM)を活用する際のギャップについて論じる。
我々は,LLMを用いた探索的フレームワークを導入し,分類を超えて深い意味分析を行う。
このフレームワークを大規模産業データセットに適用し、障害モード識別、因果連鎖推論、比較サイト分析、データ品質監査の4つのワークフローを実行する。
以上の結果から,LSMはラベリングを超えてテキスト情報を合成し,実行可能な専門家レベルの仮説を生成する強力な「信頼性コパイロット」として機能することが示唆された。
この研究は、風力エネルギーセクターにおける運用上のインテリジェンスを強化するための新しい経路を提供し、未構造化データに隠された洞察を解き放つことによって、LSMを推論ツールとして利用するための、新しく再現可能な方法論に貢献する。
関連論文リスト
- LLM Agents for Interactive Workflow Provenance: Reference Architecture and Evaluation Methodology [3.470217255779291]
本稿では,対話型大規模言語モデル(LLM)エージェントをランタイムデータ解析に活用する評価手法,参照アーキテクチャ,オープンソース実装を提案する。
提案手法では,自然言語を構造化された前処理クエリに変換する軽量なメタデータ駆動型設計を用いる。
LLaMA、GPT、Gemini、Claudeにまたがる評価では、多様なクエリクラスと現実世界の化学ワークフローを網羅し、モジュール設計、即時チューニング、Retrieval-Augmented Generation (RAG)が正確で洞察に富んだエージェント応答を可能にすることを示している。
論文 参考訳(メタデータ) (2025-09-17T13:51:29Z) - IDA-Bench: Evaluating LLMs on Interactive Guided Data Analysis [60.32962597618861]
IDA-Benchは、多ラウンドの対話シナリオで大規模言語モデルを評価する新しいベンチマークである。
エージェント性能は、最終的な数値出力と人間由来のベースラインを比較して判断する。
最先端のコーディングエージェント(Claude-3.7-thinkingなど)でさえ50%のタスクを成功させ、シングルターンテストでは明らかでない制限を強調している。
論文 参考訳(メタデータ) (2025-05-23T09:37:52Z) - TAMO:Fine-Grained Root Cause Analysis via Tool-Assisted LLM Agent with Multi-Modality Observation Data in Cloud-Native Systems [33.5606443790794]
大規模言語モデル(LLM)は、コンテキスト推論とドメイン知識の統合においてブレークスルーをもたらした。
細粒度根本原因解析のための多モード観測データ,すなわちTAMOを用いたツール支援LLMエージェントを提案する。
論文 参考訳(メタデータ) (2025-04-29T06:50:48Z) - AIRepr: An Analyst-Inspector Framework for Evaluating Reproducibility of LLMs in Data Science [5.064778712920176]
大規模言語モデル(LLM)は、実行可能なコード生成を通じてデータ分析を自動化するために、ますます使われるようになっている。
LLM 生成データ解析の $itRepr$oducibility を自動的に評価し,改善するための $itA$nalyst - $itI$nspector フレームワークである $itAIRepr を提示する。
論文 参考訳(メタデータ) (2025-02-23T01:15:50Z) - Robust Detection of LLM-Generated Text: A Comparative Analysis [0.276240219662896]
大規模言語モデルは生命の多くの側面に広く統合することができ、その出力は全てのネットワークリソースを迅速に満たすことができる。
生成したテキストの強力な検出器を開発することがますます重要になっている。
この検出器は、これらの技術の潜在的な誤用を防ぎ、ソーシャルメディアなどのエリアを負の効果から保護するために不可欠である。
論文 参考訳(メタデータ) (2024-11-09T18:27:15Z) - LLM Inference Unveiled: Survey and Roofline Model Insights [62.92811060490876]
大規模言語モデル(LLM)推論は急速に進化しており、機会と課題のユニークなブレンドを提示している。
本調査は, 研究状況を要約するだけでなく, 屋上モデルに基づく枠組みを導入することによって, 従来の文献レビューから際立っている。
このフレームワークは、ハードウェアデバイスにLSMをデプロイする際のボトルネックを特定し、実用上の問題を明確に理解する。
論文 参考訳(メタデータ) (2024-02-26T07:33:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。