論文の概要: Rebuild AC Power Flow Models with Graph Attention Networks
- arxiv url: http://arxiv.org/abs/2509.22733v1
- Date: Thu, 25 Sep 2025 14:54:35 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-30 22:32:18.832361
- Title: Rebuild AC Power Flow Models with Graph Attention Networks
- Title(参考訳): グラフアテンションネットワークを用いた交流パワーフローモデルの再構築
- Authors: Yuting Hu, Jinjun Xiong,
- Abstract要約: フルパワーフローモデル(フルパワーフローモデル、英: Full Power Flow Model)は、物理電力ネットワークの完全な表現である。
実際には、いくつかのPFモデルパラメータは、電力系統の不確かさや力学のために不正確なり、利用できないこともある。
本稿では,各バスにおける電圧の実部と虚部に基づいて新しいグラフを構築することにより,グラフアテンションネットワーク(GAT)に基づくPF再構築モデルを提案する。
- 参考スコア(独自算出の注目度): 12.545107227000239
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: A full power flow (PF) model is a complete representation of the physical power network. Traditional model-based methods rely on the full PF model to implement power flow analysis. In practice, however, some PF model parameters can be inaccurate or even unavailable due to the uncertainties or dynamics in the power systems. Moreover, because the power network keeps evolving with possibly changing topology, the generalizability of a PF model to different network sizes and typologies should be considered. In this paper, we propose a PF rebuild model based on graph attention networks (GAT) by constructing a new graph based on the real and imaginary parts of voltage at each bus. By comparing with two state-of-the-art PF rebuild models for different standard IEEE power system cases and their modified topology variants, we demonstrate the feasibility of our method. Experimental results show that our proposed model achieves better accuracy for a changing network and can generalize to different networks with less accuracy discount.
- Abstract(参考訳): フルパワーフローモデル(フルパワーフローモデル、英: Full Power Flow Model)は、物理電力ネットワークの完全な表現である。
従来のモデルベースの手法は、電力フロー解析を実装するために完全なPFモデルに依存している。
しかし実際には、電力系統の不確かさや力学のため、一部のPFモデルパラメータは不正確なり、利用できないこともある。
さらに、電力ネットワークはトポロジの変化とともに進化し続けるため、PFモデルの異なるネットワークサイズとタイプロジへの一般化性を考慮する必要がある。
本稿では,各バスにおける電圧の実部と虚部に基づいて新しいグラフを構築することにより,グラフアテンションネットワーク(GAT)に基づくPF再構成モデルを提案する。
異なる標準IEEE電力系統に対する2つの最先端PF再構成モデルとそれらの修正トポロジのバリエーションを比較して,本手法の有効性を実証する。
実験結果から,提案モデルによりネットワーク変更の精度が向上し,精度の低いネットワークに一般化できることが示唆された。
関連論文リスト
- Jet: A Modern Transformer-Based Normalizing Flow [62.2573739835562]
本稿では,結合型正規化フローモデルの設計を再考する。
よりシンプルなアーキテクチャで、最先端の定量的、質的なパフォーマンスを実現しています。
論文 参考訳(メタデータ) (2024-12-19T18:09:42Z) - ACDiT: Interpolating Autoregressive Conditional Modeling and Diffusion Transformer [95.80384464922147]
ACDiTはブロックワイド条件拡散変換器である。
トークン単位の自己回帰とフルシーケンス拡散のフレキシブルな関係を提供する。
本稿では,映像生成タスクにおける自己回帰ベースラインの中で,ACDiTが最良であることを示す。
論文 参考訳(メタデータ) (2024-12-10T18:13:20Z) - Power Flow Analysis Using Deep Neural Networks in Three-Phase Unbalanced
Smart Distribution Grids [0.7037008937757394]
本稿では3つのディープニューラルネットワーク(DNN)を提案し,PF(Power Flow)ソリューションの予測を行った。
トレーニングデータとテストデータは、OpenDSS-MATLAB COMインターフェースを介して生成される。
提案手法の新規性は、モデルが不均衡分布格子に対するPF解を正確に予測できることである。
論文 参考訳(メタデータ) (2024-01-15T04:43:37Z) - Forecasting Intraday Power Output by a Set of PV Systems using Recurrent Neural Networks and Physical Covariates [0.0]
PhotoVoltaic(PV)システムによる出力の正確な予測は、エネルギー分配グリッドの動作を改善するために重要である。
このような日内予測の実現を目的とした神経自己回帰モデルについて述べる。
論文 参考訳(メタデータ) (2023-03-15T09:03:58Z) - Sparse Flows: Pruning Continuous-depth Models [107.98191032466544]
生成モデルにおいて,プルーニングによりニューラルネットワークの一般化が向上することを示す。
また、プルーニングは、元のネットワークに比べて最大98%少ないパラメータで、精度を損なうことなく、最小かつ効率的なニューラルODE表現を見出すことを示した。
論文 参考訳(メタデータ) (2021-06-24T01:40:17Z) - Learning Discrete Energy-based Models via Auxiliary-variable Local
Exploration [130.89746032163106]
離散構造データに対する条件付きおよび非条件付きEMMを学習するための新しいアルゴリズムであるALOEを提案する。
エネルギー関数とサンプリング器は、新しい変分型電力繰り返しにより効率よく訓練できることを示す。
本稿では、ソフトウェアテストのためのエネルギーモデルガイド付ファジィザについて、libfuzzerのようなよく設計されたファジィエンジンに匹敵する性能を実現する。
論文 参考訳(メタデータ) (2020-11-10T19:31:29Z) - Pre-Trained Models for Heterogeneous Information Networks [57.78194356302626]
異種情報ネットワークの特徴を捉えるための自己教師付き事前学習・微調整フレームワークPF-HINを提案する。
PF-HINは4つのデータセットにおいて、各タスクにおける最先端の代替よりも一貫して、大幅に優れています。
論文 参考訳(メタデータ) (2020-07-07T03:36:28Z) - Normalizing Flows with Multi-Scale Autoregressive Priors [131.895570212956]
マルチスケール自己回帰前処理(mAR)を通した遅延空間におけるチャネルワイド依存性を導入する。
我々のmARは、分割結合フロー層(mAR-SCF)を持つモデルに先立って、複雑なマルチモーダルデータの依存関係をよりよく捉えます。
我々は,mAR-SCFにより画像生成品質が向上し,FIDとインセプションのスコアは最先端のフローベースモデルと比較して向上したことを示す。
論文 参考訳(メタデータ) (2020-04-08T09:07:11Z) - Physics-Guided Deep Neural Networks for Power Flow Analysis [18.761212680554863]
本稿では,PF(Power Flow)問題を解決する物理誘導型ニューラルネットワークを提案する。
Kirchhoffの法則とシステムトポロジーの異なる粒度を再構成されたPFモデルに符号化することにより、ニューラルネットワークに基づくPFソルバは補助タスクによって正規化される。
論文 参考訳(メタデータ) (2020-01-31T23:24:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。