論文の概要: Stochastic Interpolants via Conditional Dependent Coupling
- arxiv url: http://arxiv.org/abs/2509.23122v1
- Date: Sat, 27 Sep 2025 05:03:08 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-30 22:32:19.052752
- Title: Stochastic Interpolants via Conditional Dependent Coupling
- Title(参考訳): 条件依存結合による確率補間器
- Authors: Chenrui Ma, Xi Xiao, Tianyang Wang, Xiao Wang, Yanning Shen,
- Abstract要約: 既存の画像生成モデルは、計算と忠実性のトレードオフに関して重要な課題に直面している。
提案した条件依存結合戦略に基づく統合型多段階生成フレームワークを提案する。
生成過程を複数の段階で補間軌道に分解し、エンドツーエンドの最適化を可能にしながら正確な分布学習を保証する。
- 参考スコア(独自算出の注目度): 36.84747986070112
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Existing image generation models face critical challenges regarding the trade-off between computation and fidelity. Specifically, models relying on a pretrained Variational Autoencoder (VAE) suffer from information loss, limited detail, and the inability to support end-to-end training. In contrast, models operating directly in the pixel space incur prohibitive computational cost. Although cascade models can mitigate computational cost, stage-wise separation prevents effective end-to-end optimization, hampers knowledge sharing, and often results in inaccurate distribution learning within each stage. To address these challenges, we introduce a unified multistage generative framework based on our proposed Conditional Dependent Coupling strategy. It decomposes the generative process into interpolant trajectories at multiple stages, ensuring accurate distribution learning while enabling end-to-end optimization. Importantly, the entire process is modeled as a single unified Diffusion Transformer, eliminating the need for disjoint modules and also enabling knowledge sharing. Extensive experiments demonstrate that our method achieves both high fidelity and efficiency across multiple resolutions.
- Abstract(参考訳): 既存の画像生成モデルは、計算と忠実性のトレードオフに関して重要な課題に直面している。
具体的には、事前訓練された変分オートエンコーダ(VAE)に依存するモデルは、情報損失、詳細が限られており、エンドツーエンドのトレーニングをサポートできない。
対照的に、ピクセル空間で直接動作するモデルでは、計算コストが禁じられている。
カスケードモデルは計算コストを軽減することができるが、段階的分離は効率的なエンドツーエンド最適化を阻害し、知識共有を阻害し、しばしば各段階における不正確な分布学習をもたらす。
これらの課題に対処するために,提案した条件依存結合戦略に基づく多段階生成フレームワークを導入する。
生成過程を複数の段階で補間軌道に分解し、エンドツーエンドの最適化を可能にしながら正確な分布学習を保証する。
重要なことは、プロセス全体を単一の統合拡散変換器としてモデル化し、解離モジュールの必要性を排除し、知識共有を可能にすることである。
大規模な実験により,本手法は高忠実度と高効率性を両立できることを示した。
関連論文リスト
- Composition and Alignment of Diffusion Models using Constrained Learning [79.36736636241564]
拡散モデルは、複雑な分布からサンプルを採取する能力により、生成的モデリングにおいて普及している。
i) 拡散モデルを微調整して報酬と整合させるアライメントと、(ii) 予め訓練された拡散モデルを組み合わせて、それぞれが生成した出力に望ましい属性を強調する合成である。
本稿では,共役モデルが報酬制約を満たすこと,あるいは(潜在的に複数の)事前学習モデルに近づき続けることを強制することによって,拡散モデルのアライメントと構成を統一する制約付き最適化フレームワークを提案する。
論文 参考訳(メタデータ) (2025-08-26T15:06:30Z) - Hybrid Autoregressive-Diffusion Model for Real-Time Sign Language Production [0.0]
我々は手話生成のための自己回帰モデルと拡散モデルを組み合わせたハイブリッドアプローチを開発する。
微粒な体の動きを捉えるため,異なる音節から細かな特徴を別々に抽出するマルチスケール・ポース表現モジュールを設計した。
ポーズ生成過程を動的に導くために,共同レベルの信頼度スコアを利用する信頼度対応型因果注意機構を導入する。
論文 参考訳(メタデータ) (2025-07-12T01:34:50Z) - Modeling Multi-Task Model Merging as Adaptive Projective Gradient Descent [72.10987117380584]
複数のエキスパートモデルをマージすることは、元のデータにアクセスせずにマルチタスク学習を実行するための有望なアプローチを提供する。
既存のメソッドは、競合を引き起こす一方で、パフォーマンスにとって重要なタスク固有の情報を捨てている。
我々の手法は従来の手法より一貫して優れており、視覚領域とNLP領域の両方において様々なアーキテクチャやタスクにまたがって最先端の結果が得られます。
論文 参考訳(メタデータ) (2025-01-02T12:45:21Z) - Efficient Fine-Tuning and Concept Suppression for Pruned Diffusion Models [93.76814568163353]
本稿では,2段階の拡散モデルに対する新しい最適化フレームワークを提案する。
このフレームワークは、微調整と未学習のプロセスを統一的なフェーズに統合する。
様々なプルーニングや概念未学習の手法と互換性がある。
論文 参考訳(メタデータ) (2024-12-19T19:13:18Z) - Towards Efficient Pareto Set Approximation via Mixture of Experts Based Model Fusion [53.33473557562837]
大規模深層ニューラルネットワークに対する多目的最適化問題を解くことは、損失ランドスケープの複雑さと高価な計算コストのために難しい課題である。
本稿では,専門家(MoE)をベースとしたモデル融合を用いて,この問題を実用的でスケーラブルに解決する手法を提案する。
特殊な単一タスクモデルの重みをまとめることで、MoEモジュールは複数の目的間のトレードオフを効果的に捉えることができる。
論文 参考訳(メタデータ) (2024-06-14T07:16:18Z) - AdaDiff: Accelerating Diffusion Models through Step-Wise Adaptive Computation [32.74923906921339]
拡散モデルは多彩で高忠実な画像を生成する上で大きな成功を収めるが、それらの応用は本質的に遅い生成速度によって妨げられる。
本稿では,拡散モデルの生成効率を向上させるために,各サンプリングステップで動的に計算資源を割り当てる適応フレームワークであるAdaDiffを提案する。
論文 参考訳(メタデータ) (2023-09-29T09:10:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。