論文の概要: AdaDiff: Accelerating Diffusion Models through Step-Wise Adaptive Computation
- arxiv url: http://arxiv.org/abs/2309.17074v3
- Date: Fri, 16 Aug 2024 04:46:19 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-19 21:05:52.180954
- Title: AdaDiff: Accelerating Diffusion Models through Step-Wise Adaptive Computation
- Title(参考訳): AdaDiff: ステップワイズ適応計算による拡散モデルの高速化
- Authors: Shengkun Tang, Yaqing Wang, Caiwen Ding, Yi Liang, Yao Li, Dongkuan Xu,
- Abstract要約: 拡散モデルは多彩で高忠実な画像を生成する上で大きな成功を収めるが、それらの応用は本質的に遅い生成速度によって妨げられる。
本稿では,拡散モデルの生成効率を向上させるために,各サンプリングステップで動的に計算資源を割り当てる適応フレームワークであるAdaDiffを提案する。
- 参考スコア(独自算出の注目度): 32.74923906921339
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Diffusion models achieve great success in generating diverse and high-fidelity images, yet their widespread application, especially in real-time scenarios, is hampered by their inherently slow generation speed. The slow generation stems from the necessity of multi-step network inference. While some certain predictions benefit from the full computation of the model in each sampling iteration, not every iteration requires the same amount of computation, potentially leading to inefficient computation. Unlike typical adaptive computation challenges that deal with single-step generation problems, diffusion processes with a multi-step generation need to dynamically adjust their computational resource allocation based on the ongoing assessment of each step's importance to the final image output, presenting a unique set of challenges. In this work, we propose AdaDiff, an adaptive framework that dynamically allocates computation resources in each sampling step to improve the generation efficiency of diffusion models. To assess the effects of changes in computational effort on image quality, we present a timestep-aware uncertainty estimation module (UEM). Integrated at each intermediate layer, the UEM evaluates the predictive uncertainty. This uncertainty measurement serves as an indicator for determining whether to terminate the inference process. Additionally, we introduce an uncertainty-aware layer-wise loss aimed at bridging the performance gap between full models and their adaptive counterparts.
- Abstract(参考訳): 拡散モデルは多彩で高忠実な画像を生成する上で大きな成功を収めるが、特にリアルタイムシナリオにおいて広く応用されることは、その本質的に遅い生成速度によって妨げられる。
遅い生成は、マルチステップネットワーク推論の必要性から生じる。
いくつかの特定の予測は、各サンプリングイテレーションにおけるモデルの完全な計算の恩恵を受けるが、全てのイテレーションが同じ量の計算を必要とするわけではないため、潜在的に非効率な計算につながる。
単段階生成問題に対処する典型的な適応型計算問題とは異なり、多段階生成を伴う拡散プロセスは、各ステップの重要度を最終的な画像出力に対して継続的に評価することに基づいて、その計算資源割り当てを動的に調整する必要がある。
本研究では,各サンプリングステップで動的に計算資源を割り当て,拡散モデルの生成効率を向上させる適応フレームワークであるAdaDiffを提案する。
画像品質に対する計算作業の変化の影響を評価するため,時間認識不確実性推定モジュール(UEM)を提案する。
各中間層で統合され、UEMは予測の不確実性を評価する。
この不確実性測定は、推論プロセスの終了を決定する指標となる。
さらに、フルモデルと適応モデル間の性能ギャップを埋めることを目的とした不確実性認識層ワイドロスを導入する。
関連論文リスト
- A deep neural network framework for dynamic multi-valued mapping estimation and its applications [3.21704928672212]
本稿では、生成ネットワークと分類コンポーネントを組み込んだディープニューラルネットワークフレームワークを提案する。
本研究の目的は、信頼性の高い不確実性測定を提供することにより、入力と出力の間の動的多値写像をモデル化することである。
実験結果から,不確実性を考慮した動的多値写像を精度良く推定できることが示唆された。
論文 参考訳(メタデータ) (2024-06-29T03:26:51Z) - Adv-KD: Adversarial Knowledge Distillation for Faster Diffusion Sampling [2.91204440475204]
拡散確率モデル(DPM)は、深層生成モデルの強力なクラスとして登場した。
それらは、サンプル生成中にシーケンシャルなデノイングステップに依存している。
モデルアーキテクチャに直接位相を分解する新しい手法を提案する。
論文 参考訳(メタデータ) (2024-05-31T08:19:44Z) - Switchable Decision: Dynamic Neural Generation Networks [98.61113699324429]
本稿では,各データインスタンスのリソースを動的に割り当てることで,推論を高速化するスイッチブルな決定を提案する。
提案手法は, 同一の精度を維持しながら, 推論時のコスト低減に有効である。
論文 参考訳(メタデータ) (2024-05-07T17:44:54Z) - TMPQ-DM: Joint Timestep Reduction and Quantization Precision Selection for Efficient Diffusion Models [40.5153344875351]
我々はTMPQ-DMを導入し、タイムステップの削減と量子化を共同で最適化し、優れた性能・効率のトレードオフを実現する。
時間段階の削減のために、デノナイジング過程の非一様性に合わせた非一様グルーピングスキームを考案する。
量子化の観点では、最終的な生成性能に対するそれぞれの貢献に基づいて、異なる層に異なるビット幅を割り当てる、きめ細かいレイヤーワイズアプローチを採用する。
論文 参考訳(メタデータ) (2024-04-15T07:51:40Z) - Not All Steps are Equal: Efficient Generation with Progressive Diffusion
Models [62.155612146799314]
ステップ適応トレーニングと呼ばれる新しい2段階のトレーニング戦略を提案する。
初期段階では、ベース・デノナイジング・モデルはすべてのタイムステップを包含するように訓練される。
タイムステップを別々のグループに分割し、各グループ内でモデルを微調整して、特殊な認知機能を実現します。
論文 参考訳(メタデータ) (2023-12-20T03:32:58Z) - Amortizing intractable inference in large language models [56.92471123778389]
難治性後部分布のサンプルとして, 償却ベイズ推定を用いる。
我々は,LLMファインチューニングの分散マッチングパラダイムが,最大習熟の代替となることを実証的に実証した。
重要な応用として、チェーン・オブ・ソート推論を潜在変数モデリング問題として解釈する。
論文 参考訳(メタデータ) (2023-10-06T16:36:08Z) - A Multi-Head Ensemble Multi-Task Learning Approach for Dynamical
Computation Offloading [62.34538208323411]
共有バックボーンと複数の予測ヘッド(PH)を組み合わせたマルチヘッドマルチタスク学習(MEMTL)手法を提案する。
MEMTLは、追加のトレーニングデータを必要とせず、推測精度と平均平方誤差の両方でベンチマーク手法より優れている。
論文 参考訳(メタデータ) (2023-09-02T11:01:16Z) - Latent Autoregressive Source Separation [5.871054749661012]
本稿では,ベクトル量子化遅延自己回帰音源分離(入力信号を構成源にデミックスする)を導入する。
分離法は, 自己回帰モデルが先行するベイズ式に依拠し, 付加トークンの潜在和に対して離散的(非パラメトリック)確率関数を構築した。
論文 参考訳(メタデータ) (2023-01-09T17:32:00Z) - Image Generation with Multimodal Priors using Denoising Diffusion
Probabilistic Models [54.1843419649895]
このタスクを達成するために生成モデルを使用する際の大きな課題は、すべてのモダリティと対応する出力を含むペアデータの欠如である。
本稿では,拡散確率的合成モデルに基づく多モデル先行画像生成手法を提案する。
論文 参考訳(メタデータ) (2022-06-10T12:23:05Z) - Minimum-Delay Adaptation in Non-Stationary Reinforcement Learning via
Online High-Confidence Change-Point Detection [7.685002911021767]
非定常環境におけるポリシーを効率的に学習するアルゴリズムを導入する。
これは、リアルタイム、高信頼な変更点検出統計において、潜在的に無限のデータストリームと計算を解析する。
i) このアルゴリズムは, 予期せぬ状況変化が検出されるまでの遅延を最小限に抑え, 迅速な応答を可能にする。
論文 参考訳(メタデータ) (2021-05-20T01:57:52Z) - Dynamic Federated Learning [57.14673504239551]
フェデレートラーニング(Federated Learning)は、マルチエージェント環境における集中的なコーディネーション戦略の包括的用語として登場した。
我々は、各イテレーションにおいて、利用可能なエージェントのランダムなサブセットがそのデータに基づいてローカル更新を実行する、フェデレートされた学習モデルを考える。
集約最適化問題に対する真の最小化器上の非定常ランダムウォークモデルの下で、アーキテクチャの性能は、各エージェントにおけるデータ変動率、各エージェントにおけるモデル変動率、アルゴリズムの学習率に逆比例する追跡項の3つの要因によって決定されることを示す。
論文 参考訳(メタデータ) (2020-02-20T15:00:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。