論文の概要: Graph Neural Networks with Diversity-aware Neighbor Selection and Dynamic Multi-scale Fusion for Multivariate Time Series Forecasting
- arxiv url: http://arxiv.org/abs/2509.23671v1
- Date: Sun, 28 Sep 2025 06:23:43 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-30 22:32:19.364345
- Title: Graph Neural Networks with Diversity-aware Neighbor Selection and Dynamic Multi-scale Fusion for Multivariate Time Series Forecasting
- Title(参考訳): 多変量時系列予測のための多変量近傍選択と動的マルチスケール融合を用いたグラフニューラルネットワーク
- Authors: Jingqi Xu, Guibin Chen, Jingxi Lu, Yuzhang Lin,
- Abstract要約: ダイバーシティを意識した周辺選択と動的マルチスケールフュージョン(DIMIGNN)を備えたグラフニューラルネットワーク(GNN)を提案する。
DIMIGNNは、各変数が隣人と高い情報的類似性を共有することを保証するために、DNSM(Diversity-aware Neighbor Selection Mechanism)を導入している。
実世界のデータセットの実験では、DIMIGNNは従来手法よりも一貫して優れていた。
- 参考スコア(独自算出の注目度): 2.861817098638611
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, numerous deep models have been proposed to enhance the performance of multivariate time series (MTS) forecasting. Among them, Graph Neural Networks (GNNs)-based methods have shown great potential due to their capability to explicitly model inter-variable dependencies. However, these methods often overlook the diversity of information among neighbors, which may lead to redundant information aggregation. In addition, their final prediction typically relies solely on the representation from a single temporal scale. To tackle these issues, we propose a Graph Neural Networks (GNNs) with Diversity-aware Neighbor Selection and Dynamic Multi-scale Fusion (DIMIGNN). DIMIGNN introduces a Diversity-aware Neighbor Selection Mechanism (DNSM) to ensure that each variable shares high informational similarity with its neighbors while maintaining diversity among neighbors themselves. Furthermore, a Dynamic Multi-Scale Fusion Module (DMFM) is introduced to dynamically adjust the contributions of prediction results from different temporal scales to the final forecasting result. Extensive experiments on real-world datasets demonstrate that DIMIGNN consistently outperforms prior methods.
- Abstract(参考訳): 近年,多変量時系列(MTS)予測の性能向上のために,多くの深層モデルが提案されている。
その中でも、グラフニューラルネットワーク(GNN)ベースの手法は、変数間の依存関係を明示的にモデル化する能力から、大きな可能性を秘めている。
しかし、これらの手法は、しばしば隣人の情報の多様性を見落とし、冗長な情報集約につながる可能性がある。
さらに、最終的な予測は一般的に1つの時間スケールからの表現にのみ依存する。
これらの課題に対処するため,ダイバーシティを意識したグラフニューラルネットワーク(GNN)と動的マルチスケールフュージョン(DIMIGNN)を提案する。
DIMIGNNは、各変数が隣人と高い情報的類似性を共有しながら、隣人自身の多様性を維持するために、ダイバーシティを意識した隣人選択メカニズム(DNSM)を導入している。
さらに、異なる時間スケールから最終予測結果への予測結果の寄与を動的に調整するために、動的多スケール核融合モジュール(DMFM)を導入する。
実世界のデータセットに関する大規模な実験は、DIMIGNNが従来手法よりも一貫して優れていることを示した。
関連論文リスト
- SDGF: Fusing Static and Multi-Scale Dynamic Correlations for Multivariate Time Series Forecasting [9.027814258970684]
時系列の正確な予測にはシリーズ間相関が不可欠である。
これらの関係はしばしば異なる時間スケールにわたる複雑なダイナミクスを示す。
既存のメソッドは、これらのマルチスケール依存関係のモデリングに限られています。
論文 参考訳(メタデータ) (2025-09-14T11:23:12Z) - Investigating the potential of Sparse Mixtures-of-Experts for multi-domain neural machine translation [59.41178047749177]
トレーニング中に見られるさまざまなドメインのデータを扱うことができ、トレーニング中に見つからないドメインに対して堅牢な効率的なモデルを開発することを目的として、マルチドメインニューラルネットワーク翻訳に重点を置いている。
SMOE(Sparse Mixture-of-Experts)モデルは、効率的なモデルスケーリングを可能にするため、このタスクに適していると仮定する。
マルチドメインシナリオにおけるSMoEの有用性を検証するための一連の実験を行い、Transformerの簡単な幅スケーリングは、実際はよりシンプルで驚くほど効率的なアプローチであり、SMoEと同等の性能レベルに達することを発見した。
論文 参考訳(メタデータ) (2024-07-01T09:45:22Z) - MGCP: A Multi-Grained Correlation based Prediction Network for Multivariate Time Series [54.91026286579748]
本稿では,マルチグラインド相関に基づく予測ネットワークを提案する。
予測性能を高めるために3段階の相関を同時に検討する。
注意機構に基づく予測器と条件判別器を用いて、粗い粒度の予測結果を最適化する。
論文 参考訳(メタデータ) (2024-05-30T03:32:44Z) - ForecastGrapher: Redefining Multivariate Time Series Forecasting with Graph Neural Networks [9.006068771300377]
本稿では、複雑な時間的ダイナミクスと系列間相関をキャプチャするフレームワークであるForecastGrapherを紹介する。
提案手法は,各系列の時間的変動を反映するカスタムノード埋め込みの生成,系列間の相関関係を符号化する適応的隣接行列の構築,および第3に,ノード特徴分布の多様化によるGNNの表現力の増大という,3つの重要なステップによって支えられている。
論文 参考訳(メタデータ) (2024-05-28T10:40:20Z) - PDETime: Rethinking Long-Term Multivariate Time Series Forecasting from
the perspective of partial differential equations [49.80959046861793]
本稿では,ニューラルPDEソルバの原理に着想を得た新しいLMTFモデルであるPDETimeを提案する。
7つの異なる時間的実世界のLMTFデータセットを用いた実験により、PDETimeがデータ固有の性質に効果的に適応できることが判明した。
論文 参考訳(メタデータ) (2024-02-25T17:39:44Z) - CAMul: Calibrated and Accurate Multi-view Time-Series Forecasting [70.54920804222031]
本稿では,一般的な確率的マルチビュー予測フレームワークであるCAMulを提案する。
多様なデータソースから表現と不確実性を学ぶことができる。
動的コンテキスト固有の方法で、各データビューからの知識と不確実性を統合する。
CAMulは、他の最先端確率予測モデルよりも精度とキャリブレーションが25%以上向上していることを示す。
論文 参考訳(メタデータ) (2021-09-15T17:13:47Z) - Dynamic Gaussian Mixture based Deep Generative Model For Robust
Forecasting on Sparse Multivariate Time Series [43.86737761236125]
本研究では,孤立した特徴表現ではなく,潜在クラスタの遷移を追跡する新しい生成モデルを提案する。
新たに設計された動的ガウス混合分布が特徴であり、クラスタリング構造のダイナミクスを捉えている。
帰納的解析を可能にするために構造化推論ネットワークも設計されている。
論文 参考訳(メタデータ) (2021-03-03T04:10:07Z) - Variational Dynamic Mixtures [18.730501689781214]
逐次潜伏変数を推定するための変分動的混合(VDM)を開発した。
実証実験により、VDMは、高マルチモーダルデータセットにおける競合するアプローチよりも優れていることを示す。
論文 参考訳(メタデータ) (2020-10-20T16:10:07Z) - MTHetGNN: A Heterogeneous Graph Embedding Framework for Multivariate
Time Series Forecasting [4.8274015390665195]
我々は、異種グラフニューラルネットワーク(MTHetGNN)による多変量時系列予測と呼ばれる新しいエンドツーエンドディープラーニングモデルを提案する。
変数間の複雑な関係を特徴付けるため、MTHetGNNでは、各変数をグラフノードと見なす関係埋め込みモジュールを設計する。
時系列の特徴抽出に時間的埋め込みモジュールを導入し、知覚スケールの異なる畳み込みニューラルネットワーク(CNN)フィルタを含む。
論文 参考訳(メタデータ) (2020-08-19T18:21:22Z) - Connecting the Dots: Multivariate Time Series Forecasting with Graph
Neural Networks [91.65637773358347]
多変量時系列データに特化して設計された汎用グラフニューラルネットワークフレームワークを提案する。
グラフ学習モジュールを用いて,変数間の一方向関係を自動的に抽出する。
提案手法は,4つのベンチマークデータセットのうち3つにおいて,最先端のベースライン手法よりも優れている。
論文 参考訳(メタデータ) (2020-05-24T04:02:18Z) - Variational Hyper RNN for Sequence Modeling [69.0659591456772]
本稿では,時系列データにおける高変数の取得に優れる新しい確率的シーケンスモデルを提案する。
提案手法では,時間潜時変数を用いて基礎となるデータパターンに関する情報をキャプチャする。
提案手法の有効性を,合成および実世界のシーケンシャルデータに示す。
論文 参考訳(メタデータ) (2020-02-24T19:30:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。