論文の概要: MedLA: A Logic-Driven Multi-Agent Framework for Complex Medical Reasoning with Large Language Models
- arxiv url: http://arxiv.org/abs/2509.23725v1
- Date: Sun, 28 Sep 2025 08:06:39 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-30 22:32:19.402503
- Title: MedLA: A Logic-Driven Multi-Agent Framework for Complex Medical Reasoning with Large Language Models
- Title(参考訳): MedLA:大規模言語モデルを用いた複雑な医療推論のための論理駆動型マルチエージェントフレームワーク
- Authors: Siqi Ma, Jiajie Huang, Bolin Yang, Fan Zhang, Jinlin Wu, Yue Shen, Guohui Fan, Zhu Zhang, Zelin Zang,
- Abstract要約: textscMedLAは、大規模な言語モデル上に構築されたロジック駆動のマルチエージェントフレームワークである。
エージェントはグラフ誘導の議論を行い、論理木を比較して反復的に洗練する。
textscMedLAは静的ロールベースシステムと単一エージェントベースラインの両方を一貫して上回っていることを実証する。
- 参考スコア(独自算出の注目度): 26.152027922514957
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Answering complex medical questions requires not only domain expertise and patient-specific information, but also structured and multi-perspective reasoning. Existing multi-agent approaches often rely on fixed roles or shallow interaction prompts, limiting their ability to detect and resolve fine-grained logical inconsistencies. To address this, we propose \textsc{MedLA}, a logic-driven multi-agent framework built on large language models. Each agent organizes its reasoning process into an explicit logical tree based on syllogistic triads (major premise, minor premise, and conclusion), enabling transparent inference and premise-level alignment. Agents engage in a multi-round, graph-guided discussion to compare and iteratively refine their logic trees, achieving consensus through error correction and contradiction resolution. We demonstrate that \textsc{MedLA} consistently outperforms both static role-based systems and single-agent baselines on challenging benchmarks such as MedDDx and standard medical QA tasks. Furthermore, \textsc{MedLA} scales effectively across both open-source and commercial LLM backbones, achieving state-of-the-art performance and offering a generalizable paradigm for trustworthy medical reasoning.
- Abstract(参考訳): 複雑な医学的疑問に答えるには、専門分野の専門知識と患者固有の情報だけでなく、構造化され、多面的な推論が必要である。
既存のマルチエージェントアプローチは、しばしば固定された役割や浅い相互作用のプロンプトに依存し、きめ細かい論理的矛盾を検出し解決する能力を制限する。
そこで本稿では,大規模言語モデルに基づく論理駆動型マルチエージェントフレームワークである‘textsc{MedLA} を提案する。
各エージェントは、その推論プロセスをシロジックな三重項(大前提、小前提、結論)に基づいて明示的な論理木に整理し、透過的な推論と前提レベルのアライメントを可能にする。
エージェントは複数ラウンドでグラフ誘導の議論を行い、論理木を比較し、反復的に洗練し、誤り訂正と矛盾解決を通じてコンセンサスを達成する。
MedDDx や標準医療QA タスクなど,静的なロールベースシステムと単一エージェントベースラインの両方を一貫して上回っていることを実証する。
さらに、textsc{MedLA} はオープンソースと商用両方の LLM バックボーンを効果的にスケールし、最先端のパフォーマンスを実現し、信頼できる医療推論のための一般化可能なパラダイムを提供する。
関連論文リスト
- DocThinker: Explainable Multimodal Large Language Models with Rule-based Reinforcement Learning for Document Understanding [66.07724324530844]
動的推論時間推論のためのルールベースの強化学習フレームワークであるDocThinkerを提案する。
本手法は破滅的な忘れ込みを軽減し,適応性と透明性を両立させる。
本研究は,MLLMに基づく文書理解における説明可能性と適応性を高めるための強力な代替手段として,RLに注目した。
論文 参考訳(メタデータ) (2025-08-12T03:06:55Z) - Tree-of-Reasoning: Towards Complex Medical Diagnosis via Multi-Agent Reasoning with Evidence Tree [14.013981070330153]
複雑なシナリオを扱うために設計された新しいマルチエージェントフレームワークであるTree-of-Reasoning (ToR)を提案する。
具体的には、大規模言語モデル(LLM)の推論経路とそれに対応する臨床証拠を明確に記録できるツリー構造を導入する。
同時に,マルチエージェント意思決定の整合性を確保するためのクロスバリデーション機構を提案する。
論文 参考訳(メタデータ) (2025-08-05T03:31:28Z) - MedSeg-R: Reasoning Segmentation in Medical Images with Multimodal Large Language Models [48.24824129683951]
本稿では,複雑で暗黙的な医療指導に基づくセグメンテーションマスク作成を目的とした新しい課題である医用画像推論セグメンテーションを紹介する。
そこで本稿では,MLLMの推論能力を利用して臨床問題を理解するエンドツーエンドフレームワークであるMedSeg-Rを提案する。
1)画像の解釈と複雑な医用命令の理解を行い,マルチモーダルな中間トークンを生成するグローバルコンテキスト理解モジュール,2)これらのトークンをデコードして正確なセグメンテーションマスクを生成するピクセルレベルのグラウンドモジュールである。
論文 参考訳(メタデータ) (2025-06-12T08:13:38Z) - Silence is Not Consensus: Disrupting Agreement Bias in Multi-Agent LLMs via Catfish Agent for Clinical Decision Making [80.94208848596215]
提案する概念は「Catfish Agent」である。これは、構造的不満を注入し、無声な合意に反するように設計された役割特化LDMである。
組織心理学において「ナマズ・エフェクト」にインスパイアされたカマズ・エージェントは、より深い推論を促進するために、新たなコンセンサスに挑戦するように設計されている。
論文 参考訳(メタデータ) (2025-05-27T17:59:50Z) - MedAgentBoard: Benchmarking Multi-Agent Collaboration with Conventional Methods for Diverse Medical Tasks [17.567786780266353]
我々はMedAgentBoardを紹介する。MedAgentBoardは、マルチエージェントコラボレーション、シングルLLM、および従来のアプローチの体系的評価のための総合的なベンチマークである。
MedAgentBoardには、医療(視覚)質問応答、レイサマリ生成、構造化電子健康記録(EHR)予測モデリング、臨床ワークフロー自動化の4つの多様な医療タスクカテゴリが含まれている。
マルチエージェントコラボレーションは特定のシナリオにおいてメリットを示すが、高度な単一LLMを一貫して上回るものではない。
論文 参考訳(メタデータ) (2025-05-18T11:28:17Z) - A Multimodal Multi-Agent Framework for Radiology Report Generation [2.1477122604204433]
放射線診断レポート生成(RRG)は、医療画像から診断レポートを自動生成することを目的としている。
本稿では,段階的臨床推論ワークフローに適合するRRG用マルチモーダルマルチエージェントフレームワークを提案する。
論文 参考訳(メタデータ) (2025-05-14T20:28:04Z) - Inquire, Interact, and Integrate: A Proactive Agent Collaborative Framework for Zero-Shot Multimodal Medical Reasoning [21.562034852024272]
医療における大規模言語モデル(LLM)の導入は、大きな研究関心を集めている。
ほとんどの最先端のLCMは、マルチモーダル入力を直接処理できない、単調でテキストのみのモデルである。
医療マルチモーダル推論問題を解決するために,マルチモーダル医療協調推論フレームワーク textbfMultiMedRes を提案する。
論文 参考訳(メタデータ) (2024-05-19T18:26:11Z) - AI Hospital: Benchmarking Large Language Models in a Multi-agent Medical Interaction Simulator [69.51568871044454]
我々は,emphDoctorをプレイヤとして,NPC間の動的医療相互作用をシミュレーションするフレームワークであるtextbfAI Hospitalを紹介した。
この設定は臨床シナリオにおけるLCMの現実的な評価を可能にする。
高品質な中国の医療記録とNPCを利用したマルチビュー医療評価ベンチマークを開発した。
論文 参考訳(メタデータ) (2024-02-15T06:46:48Z) - Modeling Hierarchical Reasoning Chains by Linking Discourse Units and
Key Phrases for Reading Comprehension [80.99865844249106]
本稿では,論理的推論の基盤として,対話レベルと単語レベルの両方の文脈を扱う総合グラフネットワーク(HGN)を提案する。
具体的には、ノードレベルの関係とタイプレベルの関係は、推論過程におけるブリッジと解釈できるが、階層的な相互作用機構によってモデル化される。
論文 参考訳(メタデータ) (2023-06-21T07:34:27Z) - Learning Contextualized Document Representations for Healthcare Answer
Retrieval [68.02029435111193]
コンテキスト談話ベクトル(英: Contextual Discourse Vectors、CDV)は、長文からの効率的な回答検索のための分散文書表現である。
本モデルでは,階層型LSTMレイヤとマルチタスクトレーニングを併用したデュアルエンコーダアーキテクチャを用いて,臨床エンティティの位置と文書の談話に沿った側面をエンコードする。
我々の一般化モデルは、医療パスランキングにおいて、最先端のベースラインを著しく上回っていることを示す。
論文 参考訳(メタデータ) (2020-02-03T15:47:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。