論文の概要: Multi-Agent Intelligence for Multidisciplinary Decision-Making in Gastrointestinal Oncology
- arxiv url: http://arxiv.org/abs/2512.08674v1
- Date: Tue, 09 Dec 2025 14:56:40 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-12-10 22:28:08.01132
- Title: Multi-Agent Intelligence for Multidisciplinary Decision-Making in Gastrointestinal Oncology
- Title(参考訳): 消化器腫瘍学における多分野意思決定のためのマルチエージェントインテリジェンス
- Authors: Rongzhao Zhang, Junqiao Wang, Shuyun Yang, Mouxiao Bian, Chao Ding, Yuwei Bai, Chihao Zhang, Yuguang Shen, Lei Wang, Lei Zheng, Qiujuan Yan, Yun Zhong, Meiling Liu, Jiwei Yu, Zheng Wang, Jie Xu, Meng Luo,
- Abstract要約: ヒト多部門チーム(MDT)の協調ワークフローをエミュレートした階層型マルチエージェントフレームワークを提案する。
このシステムは4.60/5.00の総合評価スコアを獲得し、モノリシック基線よりも大幅に改善された。
この結果は,腫瘍学における自動意思決定支援のための,緩和的,エージェントベースの協調作業が,スケーラブルで解釈可能,かつ,臨床的に堅牢なパラダイムを提供することを示している。
- 参考スコア(独自算出の注目度): 13.663415863327996
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multimodal clinical reasoning in the field of gastrointestinal (GI) oncology necessitates the integrated interpretation of endoscopic imagery, radiological data, and biochemical markers. Despite the evident potential exhibited by Multimodal Large Language Models (MLLMs), they frequently encounter challenges such as context dilution and hallucination when confronted with intricate, heterogeneous medical histories. In order to address these limitations, a hierarchical Multi-Agent Framework is proposed, which emulates the collaborative workflow of a human Multidisciplinary Team (MDT). The system attained a composite expert evaluation score of 4.60/5.00, thereby demonstrating a substantial improvement over the monolithic baseline. It is noteworthy that the agent-based architecture yielded the most substantial enhancements in reasoning logic and medical accuracy. The findings indicate that mimetic, agent-based collaboration provides a scalable, interpretable, and clinically robust paradigm for automated decision support in oncology.
- Abstract(参考訳): 消化管腫瘍学(GI)領域におけるマルチモーダルな臨床推論は、内視鏡像、放射線学的データ、生化学マーカーの統合的な解釈を必要とする。
MLLM(Multimodal Large Language Models)によって明らかな可能性にもかかわらず、複雑で異質な医学史に直面すると、文脈の希釈や幻覚といった問題にしばしば遭遇する。
これらの制約に対処するために、人間の多部門チーム(MDT)の協調ワークフローをエミュレートした階層型マルチエージェントフレームワークを提案する。
このシステムは4.60/5.00の総合評価スコアを獲得し、モノリシック基線よりも大幅に改善された。
エージェントベースのアーキテクチャは、論理学と医学的正確性において、最も実質的な向上をもたらしたことは注目に値する。
この結果は,腫瘍学における自動意思決定支援のための,緩和的,エージェントベースの協調作業が,スケーラブルで解釈可能,かつ,臨床的に堅牢なパラダイムを提供することを示している。
関連論文リスト
- A Knowledge-driven Adaptive Collaboration of LLMs for Enhancing Medical Decision-making [49.048767633316764]
KAMACは知識駆動のAdaptive Multi-Agent Collaborationフレームワークである。
エージェントは進化する診断コンテキストに基づいて、専門家チームを動的に形成および拡張することができる。
2つの実世界の医療ベンチマーク実験により、KAMACはシングルエージェント法と高度なマルチエージェント法の両方を著しく上回っていることが示された。
論文 参考訳(メタデータ) (2025-09-18T14:33:36Z) - Automated Clinical Problem Detection from SOAP Notes using a Collaborative Multi-Agent LLM Architecture [8.072932739333309]
我々は,このギャップに対処するために,臨床相談チームをモデル化する共同マルチエージェントシステム(MAS)を導入する。
このシステムは、SOAPノートの主観的(S)および目的的(O)セクションのみを分析することによって、臨床上の問題を特定する。
マネージャエージェントは、階層的で反復的な議論に従事し、合意に達するために、動的に割り当てられた専門家エージェントのチームを編成する。
論文 参考訳(メタデータ) (2025-08-29T17:31:24Z) - Tree-of-Reasoning: Towards Complex Medical Diagnosis via Multi-Agent Reasoning with Evidence Tree [14.013981070330153]
複雑なシナリオを扱うために設計された新しいマルチエージェントフレームワークであるTree-of-Reasoning (ToR)を提案する。
具体的には、大規模言語モデル(LLM)の推論経路とそれに対応する臨床証拠を明確に記録できるツリー構造を導入する。
同時に,マルチエージェント意思決定の整合性を確保するためのクロスバリデーション機構を提案する。
論文 参考訳(メタデータ) (2025-08-05T03:31:28Z) - RadFabric: Agentic AI System with Reasoning Capability for Radiology [61.25593938175618]
RadFabricは、総合的なCXR解釈のための視覚的およびテキスト分析を統合するマルチエージェント、マルチモーダル推論フレームワークである。
システムは、病理診断に特殊なCXRエージェント、正確な解剖学的構造に視覚所見をマッピングする解剖学的解釈エージェント、および視覚的、解剖学的、臨床データを透明かつ証拠に基づく診断に合成する大規模なマルチモーダル推論モデルを利用した推論エージェントを使用する。
論文 参考訳(メタデータ) (2025-06-17T03:10:33Z) - A Multimodal Multi-Agent Framework for Radiology Report Generation [2.1477122604204433]
放射線診断レポート生成(RRG)は、医療画像から診断レポートを自動生成することを目的としている。
本稿では,段階的臨床推論ワークフローに適合するRRG用マルチモーダルマルチエージェントフレームワークを提案する。
論文 参考訳(メタデータ) (2025-05-14T20:28:04Z) - m-KAILIN: Knowledge-Driven Agentic Scientific Corpus Distillation Framework for Biomedical Large Language Models Training [22.996230737442254]
バイオメディカルな大規模言語モデル(LLM)のためのコーパスヘッダーは、オープンソースの科学コーパスにおいて、不十分な量と品質のプレス課題に対処しようとしている。
本稿では, バイオメディカル領域におけるLLMトレーニングに適した, 科学的コーパス蒸留のための知識駆動型エージェントフレームワークを提案する。
論文 参考訳(メタデータ) (2025-04-28T08:18:24Z) - TAMA: A Human-AI Collaborative Thematic Analysis Framework Using Multi-Agent LLMs for Clinical Interviews [54.35097932763878]
Thematic Analysis (TA) は、構造化されていないテキストデータの潜在意味を明らかにするために広く使われている定性的手法である。
本稿では,多エージェントLEMを用いた人間とAIの協調的テーマ分析フレームワークTAMAを提案する。
TAMA は既存の LLM 支援TA アプローチよりも優れており,高い主題的ヒット率,カバレッジ,独特性を実現している。
論文 参考訳(メタデータ) (2025-03-26T15:58:16Z) - Potential of Multimodal Large Language Models for Data Mining of Medical Images and Free-text Reports [51.45762396192655]
特にGemini-Vision-Series (Gemini) と GPT-4-Series (GPT-4) は、コンピュータビジョンのための人工知能のパラダイムシフトを象徴している。
本研究は,14の医用画像データセットを対象に,Gemini,GPT-4,および4つの一般的な大規模モデルの性能評価を行った。
論文 参考訳(メタデータ) (2024-07-08T09:08:42Z) - AI Hospital: Benchmarking Large Language Models in a Multi-agent Medical Interaction Simulator [69.51568871044454]
我々は,emphDoctorをプレイヤとして,NPC間の動的医療相互作用をシミュレーションするフレームワークであるtextbfAI Hospitalを紹介した。
この設定は臨床シナリオにおけるLCMの現実的な評価を可能にする。
高品質な中国の医療記録とNPCを利用したマルチビュー医療評価ベンチマークを開発した。
論文 参考訳(メタデータ) (2024-02-15T06:46:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。