論文の概要: Detecting and Rectifying Noisy Labels: A Similarity-based Approach
- arxiv url: http://arxiv.org/abs/2509.23964v1
- Date: Sun, 28 Sep 2025 16:41:56 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-30 22:32:19.558954
- Title: Detecting and Rectifying Noisy Labels: A Similarity-based Approach
- Title(参考訳): ノイズラベルの検出と検出:類似性に基づくアプローチ
- Authors: Dang Huu-Tien, Naoya Inoue,
- Abstract要約: 本稿では,ニューラルネットワークの直観的特徴を利用したポストホック,モデルに依存しない誤り検出と修正手法を提案する。
我々の考えは、誤ラベル付きデータポイントと真のクラスデータポイントとの類似性は他のクラスのデータポイントよりも高いという観察に基づいている。
- 参考スコア(独自算出の注目度): 5.152664482521929
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Label noise in datasets could damage the performance of neural net training. As the size of modern deep networks grows, there is a growing demand for automated tools for detecting such errors. In this paper, we propose post-hoc, model-agnostic error detection and rectification methods utilizing the penultimate feature from a neural network. Our idea is based on the observation that the similarity between the penultimate feature of a mislabeled data point and its true class data points is higher than that for data points from other classes, making the probability of label occurrence within a tight, similar cluster informative for detecting and rectifying errors. Extensive experiments show our method not only demonstrates high performance across various noises but also automatically rectifies these errors to improve the quality of datasets.
- Abstract(参考訳): データセットのラベルノイズは、ニューラルネットトレーニングのパフォーマンスを損なう可能性がある。
現代のディープネットワークのサイズが大きくなるにつれて、そのようなエラーを検出する自動化ツールの需要が高まっている。
本稿では,ニューラルネットワークからの直観的特徴を利用したポストホック,モデル非依存的誤り検出および修正手法を提案する。
我々の考えは、誤ラベル付きデータポイントと真のクラスデータポイントとの類似性は他のクラスのデータポイントよりも高く、エラーの検出と修正に有用な密接な類似クラスタ内でラベル発生の確率が高いという観察に基づいている。
大規模な実験により,提案手法は様々なノイズに対して高い性能を示すだけでなく,これらの誤りを自動的に修正し,データセットの品質を向上することを示した。
関連論文リスト
- An accurate detection is not all you need to combat label noise in web-noisy datasets [23.020126612431746]
分離した超平面の直接推定により,OOD試料の正確な検出が可能であることを示す。
本稿では,線形分離を用いた雑音検出とSOTA(State-of-the-art-the-loss)アプローチを交互に行うハイブリッドソリューションを提案する。
論文 参考訳(メタデータ) (2024-07-08T00:21:42Z) - ERASE: Error-Resilient Representation Learning on Graphs for Label Noise
Tolerance [53.73316938815873]
本稿では, ERASE (Error-Resilient representation learning on graphs for lAbel noiSe tolerancE) という手法を提案する。
ERASEは、プロトタイプの擬似ラベルとプロパゲーションされた識別ラベルを組み合わせて、表現をエラーレジリエンスで更新する。
提案手法は, 広い雑音レベルにおいて, 複数のベースラインをクリアマージンで上回り, 高いスケーラビリティを享受できる。
論文 参考訳(メタデータ) (2023-12-13T17:59:07Z) - Combating noisy labels in object detection datasets [0.0]
本稿では,オブジェクト検出データセットにおける各ラベルの品質を評価するためのCLODアルゴリズムを提案する。
欠落した、突発的で、ラベルが間違えた、そして誤配置されたバウンディングボックスを特定し、修正を提案する。
提案手法は, 擬陽性率0.1未満の人工乱れ箱の80%近くを指摘できる。
論文 参考訳(メタデータ) (2022-11-25T10:05:06Z) - Attentive Prototypes for Source-free Unsupervised Domain Adaptive 3D
Object Detection [85.11649974840758]
3Dオブジェクト検出ネットワークは、トレーニングされたデータに対してバイアスを受ける傾向がある。
そこで本研究では,ライダーを用いた3次元物体検出器のソースレス・教師なし領域適応のための単一フレーム手法を提案する。
論文 参考訳(メタデータ) (2021-11-30T18:42:42Z) - SLA$^2$P: Self-supervised Anomaly Detection with Adversarial
Perturbation [77.71161225100927]
異常検出は、機械学習の基本的な問題であるが、難しい問題である。
本稿では,非教師付き異常検出のための新しい強力なフレームワークであるSLA$2$Pを提案する。
論文 参考訳(メタデータ) (2021-11-25T03:53:43Z) - S3: Supervised Self-supervised Learning under Label Noise [53.02249460567745]
本稿では,ラベルノイズの存在下での分類の問題に対処する。
提案手法の核心は,サンプルのアノテートラベルと特徴空間内のその近傍のラベルの分布との整合性に依存するサンプル選択機構である。
提案手法は,CIFARCIFAR100とWebVisionやANIMAL-10Nなどの実環境ノイズデータセットの両方で,従来の手法をはるかに上回っている。
論文 参考訳(メタデータ) (2021-11-22T15:49:20Z) - Assessing the Quality of the Datasets by Identifying Mislabeled Samples [14.881597737762316]
本稿では,各データ点の品質を測る指標として,新しい統計値(ノイズスコア)を提案する。
本研究では,データ品質管理型変分オートエンコーダ(AQUAVS)の推論ネットワークから導出される表現を用いる。
我々は、MNIST、FashionMNIST、CIFAR10/100データセットを破損させることにより、提案した統計データを検証した。
論文 参考訳(メタデータ) (2021-09-10T17:14:09Z) - Learning with Out-of-Distribution Data for Audio Classification [60.48251022280506]
我々は,OODインスタンスを破棄するよりも,特定のOODインスタンスを検出・復号化することで,学習に肯定的な影響を及ぼすことを示す。
提案手法は,畳み込みニューラルネットワークの性能を著しく向上させる。
論文 参考訳(メタデータ) (2020-02-11T21:08:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。