論文の概要: Neural Visibility of Point Sets
- arxiv url: http://arxiv.org/abs/2509.24150v1
- Date: Mon, 29 Sep 2025 00:54:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-30 22:32:19.665451
- Title: Neural Visibility of Point Sets
- Title(参考訳): 点集合の神経可視性
- Authors: Jun-Hao Wang, Yi-Yang Tian, Baoquan Chen, Peng-Shuai Wang,
- Abstract要約: 本稿では,2進分類タスクとして定式化することで,点雲の可視性判定に新たなアプローチを提案する。
我々のネットワークは、レンダリングされた3Dモデルから生成された地味な可視性ラベルでエンドツーエンドに訓練されている。
提案手法は,HPRの精度と計算効率を両立させ,最大126倍の高速化を実現した。
- 参考スコア(独自算出の注目度): 31.13434703858653
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Point clouds are widely used representations of 3D data, but determining the visibility of points from a given viewpoint remains a challenging problem due to their sparse nature and lack of explicit connectivity. Traditional methods, such as Hidden Point Removal (HPR), face limitations in computational efficiency, robustness to noise, and handling concave regions or low-density point clouds. In this paper, we propose a novel approach to visibility determination in point clouds by formulating it as a binary classification task. The core of our network consists of a 3D U-Net that extracts view-independent point-wise features and a shared multi-layer perceptron (MLP) that predicts point visibility using the extracted features and view direction as inputs. The network is trained end-to-end with ground-truth visibility labels generated from rendered 3D models. Our method significantly outperforms HPR in both accuracy and computational efficiency, achieving up to 126 times speedup on large point clouds. Additionally, our network demonstrates robustness to noise and varying point cloud densities and generalizes well to unseen shapes. We validate the effectiveness of our approach through extensive experiments on the ShapeNet, ABC Dataset and real-world datasets, showing substantial improvements in visibility accuracy. We also demonstrate the versatility of our method in various applications, including point cloud visualization, surface reconstruction, normal estimation, shadow rendering, and viewpoint optimization. Our code and models are available at https://github.com/octree-nn/neural-visibility.
- Abstract(参考訳): 点雲は3Dデータの表現として広く使われているが、与えられた視点から点の可視性を決定することは、その細かな性質と明示的な接続性の欠如により、依然として難しい問題である。
隠れポイント除去(HPR)のような従来の手法では、計算効率、ノイズに対する堅牢性、凹部領域や密度の低い点雲の扱いに制限がある。
本稿では,二元分類タスクとして定式化することによって,点雲の可視性決定のための新しいアプローチを提案する。
我々のネットワークのコアは、ビュー非依存のポイントワイド特徴を抽出する3次元U-Netと、抽出した特徴とビュー方向を入力としてポイント可視性を予測する共有多層パーセプトロン(MLP)で構成されている。
ネットワークは、レンダリングされた3Dモデルから生成された地味な可視性ラベルでエンドツーエンドにトレーニングされている。
提案手法は,HPRの精度と計算効率を両立させ,最大126倍の高速化を実現した。
さらに,我々のネットワークはノイズに対する堅牢性を示し,様々な点雲密度を示し,目に見えない形状によく一般化する。
本研究では,ShapeNet,ABC Dataset,および実世界のデータセットに関する広範な実験を通じて,本手法の有効性を検証する。
また, 点雲可視化, 表面再構成, 正規推定, 影の描画, 視点最適化など, 様々なアプリケーションにおける本手法の汎用性を示す。
私たちのコードとモデルはhttps://github.com/octree-nn/neural-visibility.comで利用可能です。
関連論文リスト
- Clustering based Point Cloud Representation Learning for 3D Analysis [80.88995099442374]
本稿では,ポイントクラウド分析のためのクラスタリングに基づく教師付き学習手法を提案する。
現在のデファクトでシーンワイドなトレーニングパラダイムとは異なり、我々のアルゴリズムは点埋め込み空間上でクラス内のクラスタリングを行う。
我々のアルゴリズムは、有名なポイントクラウドセグメンテーションデータセットの顕著な改善を示している。
論文 参考訳(メタデータ) (2023-07-27T03:42:12Z) - Ponder: Point Cloud Pre-training via Neural Rendering [93.34522605321514]
本稿では,識別可能なニューラルエンコーダによる点雲表現の自己教師型学習手法を提案する。
学習したポイントクラウドは、3D検出やセグメンテーションといったハイレベルなレンダリングタスクだけでなく、3D再構成や画像レンダリングといった低レベルなタスクを含む、さまざまなダウンストリームタスクに簡単に統合できる。
論文 参考訳(メタデータ) (2022-12-31T08:58:39Z) - AGO-Net: Association-Guided 3D Point Cloud Object Detection Network [86.10213302724085]
ドメイン適応によるオブジェクトの無傷な特徴を関連付ける新しい3D検出フレームワークを提案する。
我々は,KITTIの3D検出ベンチマークにおいて,精度と速度の両面で最新の性能を実現する。
論文 参考訳(メタデータ) (2022-08-24T16:54:38Z) - Voint Cloud: Multi-View Point Cloud Representation for 3D Understanding [80.04281842702294]
本稿では,複数の視点から抽出した特徴の集合として,各3次元点を表す多視点クラウド(Voint Cloud)の概念を紹介する。
この新しい3次元Vointクラウド表現は、3Dポイントクラウド表現のコンパクト性と、マルチビュー表現の自然なビュー認識性を組み合わせたものである。
理論的に確立された機能を持つVointニューラルネットワーク(VointNet)をデプロイし,Voint空間の表現を学習する。
論文 参考訳(メタデータ) (2021-11-30T13:08:19Z) - Vis2Mesh: Efficient Mesh Reconstruction from Unstructured Point Clouds
of Large Scenes with Learned Virtual View Visibility [17.929307870456416]
非構造点雲からのメッシュ再構築のための新しいフレームワークを提案する。
仮想ビューと従来のグラフカットベースのメッシュ生成において、学習した3Dポイントの可視性を活用します。
論文 参考訳(メタデータ) (2021-08-18T20:28:16Z) - PnP-3D: A Plug-and-Play for 3D Point Clouds [38.05362492645094]
本稿では,既存ネットワークのポイントクラウドデータ解析における有効性を改善するために,プラグイン・アンド・プレイモジュール -3D を提案する。
アプローチを徹底的に評価するために,3つの標準的なクラウド分析タスクについて実験を行った。
本研究は,最先端の成果の達成に加えて,我々のアプローチのメリットを実証する包括的研究を提案する。
論文 参考訳(メタデータ) (2021-08-16T23:59:43Z) - Semantic Segmentation for Real Point Cloud Scenes via Bilateral
Augmentation and Adaptive Fusion [38.05362492645094]
現実世界の複雑な環境を直感的に捉えることができますが、3Dデータの生の性質のため、機械認識にとって非常に困難です。
我々は、現実に収集された大規模クラウドデータに対して、重要な視覚的タスク、セマンティックセグメンテーションに集中する。
3つのベンチマークで最先端のネットワークと比較することにより,ネットワークの有効性を実証する。
論文 参考訳(メタデータ) (2021-03-12T04:13:20Z) - Self-supervised Learning of Point Clouds via Orientation Estimation [19.31778462735251]
ラベルの少ないポイントクラウドでダウンストリームタスクを学習するために、私たちは3Dセルフスーパービジョンを活用しています。
点雲は無限に多くの方法で回転することができるので、自己超越のためにリッチなラベルのない情報源を提供する。
論文 参考訳(メタデータ) (2020-08-01T17:49:45Z) - GRNet: Gridding Residual Network for Dense Point Cloud Completion [54.43648460932248]
完全な3Dポイントクラウドを不完全なクラウドから推定することは、多くのビジョンやロボティクスアプリケーションにおいて重要な問題である。
本稿では,ポイントクラウド補完のための新しいGridding Residual Network(GRNet)を提案する。
実験結果から,提案したGRNetはShapeNet,Completion3D,KITTIベンチマークの最先端手法に対して良好に動作することがわかった。
論文 参考訳(メタデータ) (2020-06-06T02:46:39Z) - MNEW: Multi-domain Neighborhood Embedding and Weighting for Sparse Point
Clouds Segmentation [1.2380933178502298]
マルチドメインの近傍埋め込みや,その幾何学的距離,特徴的類似度,周辺空間の疎度に基づく注意重み付けなどを含むMNEWを提案する。
MNEWは、LiDARベースの自動運転認識の適用において重要であるスパースポイントクラウドの最高性能を達成する。
論文 参考訳(メタデータ) (2020-04-05T18:02:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。