論文の概要: VeriLLM: A Lightweight Framework for Publicly Verifiable Decentralized Inference
- arxiv url: http://arxiv.org/abs/2509.24257v2
- Date: Thu, 30 Oct 2025 08:38:57 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-31 16:05:09.440991
- Title: VeriLLM: A Lightweight Framework for Publicly Verifiable Decentralized Inference
- Title(参考訳): VeriLLM: パブリックに検証可能な分散推論のための軽量フレームワーク
- Authors: Ke Wang, Zishuo Zhao, Xinyuan Song, Bill Shi, Libin Xia, Chris Tong, Lynn Ai, Felix Qu, Eric Yang,
- Abstract要約: 本稿では,分散言語モデル (LLM) 推論のための公開検証プロトコルであるVeriLLMを紹介する。
VeriLLMは、軽量な経験的再実行と暗号的なコミットメントを組み合わせることで、検証者は基礎となる推論コストの約1%で結果を検証することができる。
We show that VeriLLM achieve reliable public verifiability with least overhead。
- 参考スコア(独自算出の注目度): 3.8760740008451156
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Decentralized inference provides a scalable and resilient paradigm for serving large language models (LLMs), enabling distributed resource utilization and reducing reliance on centralized providers. However, in a permissionless environment without trusted nodes, ensuring the correctness of model outputs remains a core challenge. We introduce VeriLLM, a publicly verifiable protocol for decentralized LLM inference that achieves security under a one-honest-verifier assumption while maintaining practical efficiency. VeriLLM combines lightweight empirical rerunning with cryptographic commitments, allowing verifiers to validate results at approximately 1% of the underlying inference cost. To prevent verification bottlenecks, we design an isomorphic inference-verification architecture that multiplexes both inference and verification roles across the same GPU workers. This design (i) improves GPU utilization and overall throughput, (ii) enlarges the effective validator set, enhancing robustness and liveness, and (iii) enforces task indistinguishability to prevent node-specific optimizations or selective behavior. Through theoretical analysis and system-level evaluation, we show that VeriLLM achieves reliable public verifiability with minimal overhead, offering a practical foundation for trustworthy and scalable decentralized LLM inference.
- Abstract(参考訳): 分散推論は、大規模言語モデル(LLM)を提供するためのスケーラブルでレジリエントなパラダイムを提供する。
しかし、信頼できるノードのない無許可環境では、モデル出力の正確性を保証することが、依然として重要な課題である。
本稿では,分散 LLM 推論のための検証プロトコル VeriLLM について紹介する。
VeriLLMは、軽量な経験的再実行と暗号的なコミットメントを組み合わせることで、検証者は基礎となる推論コストの約1%で結果を検証することができる。
検証ボトルネックを回避するため、同一GPUワーカ間で推論と検証の両方を多重化する同型推論検証アーキテクチャを設計する。
この設計
(i)GPUの利用率と全体的なスループットを改善する。
(二)有効なバリデータ集合を拡大し、堅牢性と活力を高め、
(iii) ノード固有の最適化や選択的な動作を防止するためにタスクの不識別性を強制する。
理論的解析とシステムレベルの評価により,VeriLLMは最小限のオーバーヘッドで信頼性の高い公的な検証性を実現し,信頼性と拡張性のある分散LLM推論のための実用的な基盤を提供する。
関連論文リスト
- Context Lineage Assurance for Non-Human Identities in Critical Multi-Agent Systems [0.08316523707191924]
本稿では,アタッチメントのみのメルクル木構造に固定された系統検証のための暗号的基盤機構を提案する。
従来のA2Aモデルとは異なり、本手法ではエージェントと外部検証器の両方が暗号的にマルチホップ前駆体を検証できる。
並行して、A2Aエージェントカードを拡張して、明示的な識別認証プリミティブを組み込むことにより、NHI表現の正当性を確認することができる。
論文 参考訳(メタデータ) (2025-09-22T20:59:51Z) - VulAgent: Hypothesis-Validation based Multi-Agent Vulnerability Detection [55.957275374847484]
VulAgentは仮説検証に基づくマルチエージェント脆弱性検出フレームワークである。
セマンティクスに敏感なマルチビュー検出パイプラインを実装しており、それぞれが特定の分析の観点から一致している。
平均して、VulAgentは全体的な精度を6.6%改善し、脆弱性のある固定されたコードペアの正確な識別率を最大450%向上させ、偽陽性率を約36%削減する。
論文 参考訳(メタデータ) (2025-09-15T02:25:38Z) - ARMOR: Aligning Secure and Safe Large Language Models via Meticulous Reasoning [49.47193675702453]
大規模言語モデル(LLM)は、顕著な生成能力を示している。
LLMは、安全上の制約を回避できる悪意のある命令に弱いままである。
推論に基づく安全アライメントフレームワークARMORを提案する。
論文 参考訳(メタデータ) (2025-07-14T09:05:54Z) - Information Bargaining: Bilateral Commitment in Bayesian Persuasion [60.3761154043329]
長期的説得のための統一的なフレームワークとよく構造化されたソリューションの概念を導入する。
この視点はゲーム構造の共通知識を明確にし、レシーバに匹敵するコミットメント能力を与える。
このフレームワークは、2段階の検証と推論のパラダイムによって検証される。
論文 参考訳(メタデータ) (2025-06-06T08:42:34Z) - Latent Veracity Inference for Identifying Errors in Stepwise Reasoning [78.29317733206643]
本稿では、精度割当てに対する離散探索アルゴリズムであるVeracity Search(VS)を紹介する。
その他の方法では、後続の精度値よりも後続の分布において難解な推論を行う。
VSを一般化し、新しいコンテキストで正確なゼロショットの精度推論を可能にする。
論文 参考訳(メタデータ) (2025-05-17T04:16:36Z) - It Takes Two: A Peer-Prediction Solution for Blockchain Verifier's Dilemma [12.663727952216476]
我々は,分散検証ゲームのための一相ベイズ的真理機構の設計に向けて,ビザンチン・ローバストなピア予測フレームワークを開発する。
我々の研究は、ブロックチェーン、分散AI、および潜在的に分散化されたシステムのセキュリティと堅牢性を高める分散検証プロトコルのためのインセンティブ設計のフレームワークを提供する。
論文 参考訳(メタデータ) (2024-06-03T21:21:17Z) - Kick Bad Guys Out! Conditionally Activated Anomaly Detection in Federated Learning with Zero-Knowledge Proof Verification [22.078088272837068]
フェデレートラーニング(FL)システムは、モデル中毒やバックドア攻撃などの敵攻撃に対して脆弱である。
本研究では,実用FLシナリオに特化して設計された新しい異常検出手法を提案する。
本手法では,2段階の条件付き検出機構を用いる。
論文 参考訳(メタデータ) (2023-10-06T07:09:05Z) - Quantum Proofs of Deletion for Learning with Errors [91.3755431537592]
完全同型暗号方式として, 完全同型暗号方式を初めて構築する。
我々の主要な技術要素は、量子証明器が古典的検証器に量子状態の形でのLearning with Errors分布からのサンプルが削除されたことを納得させる対話的プロトコルである。
論文 参考訳(メタデータ) (2022-03-03T10:07:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。