論文の概要: MedMMV: A Controllable Multimodal Multi-Agent Framework for Reliable and Verifiable Clinical Reasoning
- arxiv url: http://arxiv.org/abs/2509.24314v1
- Date: Mon, 29 Sep 2025 05:51:25 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-30 22:32:19.772651
- Title: MedMMV: A Controllable Multimodal Multi-Agent Framework for Reliable and Verifiable Clinical Reasoning
- Title(参考訳): MedMMV:信頼性・検証可能な臨床推論のための制御可能なマルチモーダルマルチエージェントフレームワーク
- Authors: Hongjun Liu, Yinghao Zhu, Yuhui Wang, Yitao Long, Zeyu Lai, Lequan Yu, Chen Zhao,
- Abstract要約: MedMMV(MedMMV)は,信頼性・信頼性の高い臨床推論のための多エージェントフレームワークである。
6つの医療ベンチマークでは、MedMMVは最大12.7%の精度向上を実現し、さらに重要な点として信頼性の向上が示されている。
- 参考スコア(独自算出の注目度): 35.97057940590796
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent progress in multimodal large language models (MLLMs) has demonstrated promising performance on medical benchmarks and in preliminary trials as clinical assistants. Yet, our pilot audit of diagnostic cases uncovers a critical failure mode: instability in early evidence interpretation precedes hallucination, creating branching reasoning trajectories that cascade into globally inconsistent conclusions. This highlights the need for clinical reasoning agents that constrain stochasticity and hallucination while producing auditable decision flows. We introduce MedMMV, a controllable multimodal multi-agent framework for reliable and verifiable clinical reasoning. MedMMV stabilizes reasoning through diversified short rollouts, grounds intermediate steps in a structured evidence graph under the supervision of a Hallucination Detector, and aggregates candidate paths with a Combined Uncertainty scorer. On six medical benchmarks, MedMMV improves accuracy by up to 12.7% and, more critically, demonstrates superior reliability. Blind physician evaluations confirm that MedMMV substantially increases reasoning truthfulness without sacrificing informational content. By controlling instability through a verifiable, multi-agent process, our framework provides a robust path toward deploying trustworthy AI systems in high-stakes domains like clinical decision support.
- Abstract(参考訳): MLLM(Multimodal large language model)の最近の進歩は、医療ベンチマークや臨床試験において有望なパフォーマンスを示している。
早期の証拠解釈における不安定性は幻覚に先行し、世界規模で矛盾する結論にカスケードする分岐推論軌道を生成する。
これは、聴覚的な決定フローを生成しながら、確率性と幻覚を抑制する臨床推論剤の必要性を強調している。
MedMMV(MedMMV, 制御可能なマルチモーダル・マルチエージェント・フレームワーク)を導入する。
MedMMVは、多角化したショートロールアウトによる推論を安定化し、幻覚検出器の監督の下で構造化されたエビデンスグラフに中間ステップを固定し、組み合わせた不確実性スコアラで候補パスを集約する。
6つの医療ベンチマークでは、MedMMVは最大12.7%の精度向上を実現し、さらに重要な点として信頼性の向上が示されている。
ブラインド医師の評価では、MedMMVは情報内容の犠牲を伴わずに真理性を高めることが確認された。
検証可能なマルチエージェントプロセスを通じて不安定性を制御することで、我々のフレームワークは、信頼できるAIシステムを臨床上の意思決定支援のような高度な領域に展開するための堅牢な道筋を提供する。
関連論文リスト
- Beyond Classification Accuracy: Neural-MedBench and the Need for Deeper Reasoning Benchmarks [21.203358914772465]
近年の視覚言語モデル (VLM) の進歩は, 標準医学ベンチマークにおいて顕著な性能を発揮しているが, その真の臨床推論能力は未だ不明である。
我々はニューラルメドベンチ(Neural-MedBench)について紹介する。これは、神経学におけるマルチモーダルな臨床推論の限界を調査するためのコンパクトで推論集約的なベンチマークである。
論文 参考訳(メタデータ) (2025-09-26T12:20:01Z) - Uncertainty-Driven Expert Control: Enhancing the Reliability of Medical Vision-Language Models [52.2001050216955]
既存の方法は、モデル構造を調整したり、高品質なデータで微調整したり、好みの微調整によって、医療ビジョン言語モデル(MedVLM)の性能を向上させることを目的としている。
我々は,MedVLMと臨床専門知識の連携を図るために,Expert-Controlled-Free Guidance (Expert-CFG) という,ループ内のエキスパート・イン・ザ・ループフレームワークを提案する。
論文 参考訳(メタデータ) (2025-07-12T09:03:30Z) - Silence is Not Consensus: Disrupting Agreement Bias in Multi-Agent LLMs via Catfish Agent for Clinical Decision Making [80.94208848596215]
提案する概念は「Catfish Agent」である。これは、構造的不満を注入し、無声な合意に反するように設計された役割特化LDMである。
組織心理学において「ナマズ・エフェクト」にインスパイアされたカマズ・エージェントは、より深い推論を促進するために、新たなコンセンサスに挑戦するように設計されている。
論文 参考訳(メタデータ) (2025-05-27T17:59:50Z) - MedAgent-Pro: Towards Evidence-based Multi-modal Medical Diagnosis via Reasoning Agentic Workflow [14.478357882578234]
現代医学では、臨床診断は主にテキストおよび視覚データの包括的分析に依存している。
大規模視覚言語モデル(VLM)およびエージェントベース手法の最近の進歩は、医学的診断に大きな可能性を秘めている。
現代医学における診断原理に従う新しいエージェント推論パラダイムであるMedAgent-Proを提案する。
論文 参考訳(メタデータ) (2025-03-21T14:04:18Z) - MedVLM-R1: Incentivizing Medical Reasoning Capability of Vision-Language Models (VLMs) via Reinforcement Learning [29.84956540178252]
推論は、医用画像解析の進歩における重要なフロンティアである。
我々は、自然言語推論を明示的に生成する医療用VLMであるMedVLM-R1を紹介する。
MedVLM-R1の精度は、MRI、CT、X線ベンチマークで55.11%から78.22%に向上している。
論文 参考訳(メタデータ) (2025-02-26T23:57:34Z) - MedCoT: Medical Chain of Thought via Hierarchical Expert [48.91966620985221]
本稿では,新しい階層的検証手法であるMedCoTについて述べる。
生体画像検査における解釈可能性と精度を高めるように設計されている。
4つの標準Med-VQAデータセットに対する実験的評価は、MedCoTが既存の最先端アプローチを上回ることを示している。
論文 参考訳(メタデータ) (2024-12-18T11:14:02Z) - Reliable Multimodality Eye Disease Screening via Mixture of Student's t
Distributions [49.4545260500952]
眼疾患スクリーニングのための新しい多モード顕在核融合パイプラインEyeMoStについて紹介する。
本モデルでは,一様性に対する局所的不確実性と融合モードに対する大域的不確実性の両方を推定し,信頼性の高い分類結果を生成する。
パブリックデータセットと社内データセットの両方に関する実験結果から、我々のモデルは現在の手法よりも信頼性が高いことが判明した。
論文 参考訳(メタデータ) (2023-03-17T06:18:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。