論文の概要: PHASE-Net: Physics-Grounded Harmonic Attention System for Efficient Remote Photoplethysmography Measurement
- arxiv url: http://arxiv.org/abs/2509.24850v2
- Date: Tue, 30 Sep 2025 03:07:53 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-01 12:20:10.417557
- Title: PHASE-Net: Physics-Grounded Harmonic Attention System for Efficient Remote Photoplethysmography Measurement
- Title(参考訳): PHASE-Net:高効率リモート光胸腺撮影のための物理界高調波計測システム
- Authors: Bo Zhao, Dan Guo, Junzhe Cao, Yong Xu, Tao Tan, Yue Sun, Bochao Zou, Jie Zhang, Zitong Yu,
- Abstract要約: 既存のディープラーニング手法は、主に生理学的モニタリングであり、理論的な堅牢性を欠いている。
本研究では,Navier-Stokes方程式のヘモダイナミックスから導かれる物理インフォームド r パラダイムを提案し,パルス信号が2次系に従うことを示す。
これは、時間的円錐ネットワーク(TCN)を使用する理論的正当性を提供する。
Phase-Netは高い効率で最先端のパフォーマンスを実現し、理論上は基礎的でデプロイ可能な r ソリューションを提供する。
- 参考スコア(独自算出の注目度): 63.007237197267834
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Remote photoplethysmography (rPPG) measurement enables non-contact physiological monitoring but suffers from accuracy degradation under head motion and illumination changes. Existing deep learning methods are mostly heuristic and lack theoretical grounding, which limits robustness and interpretability. In this work, we propose a physics-informed rPPG paradigm derived from the Navier-Stokes equations of hemodynamics, showing that the pulse signal follows a second-order dynamical system whose discrete solution naturally leads to a causal convolution. This provides a theoretical justification for using a Temporal Convolutional Network (TCN). Based on this principle, we design PHASE-Net, a lightweight model with three key components: (1) Zero-FLOPs Axial Swapper module, which swaps or transposes a few spatial channels to mix distant facial regions and enhance cross-region feature interaction without breaking temporal order; (2) Adaptive Spatial Filter, which learns a soft spatial mask per frame to highlight signal-rich areas and suppress noise; and (3) Gated TCN, a causal dilated TCN with gating that models long-range temporal dynamics for accurate pulse recovery. Extensive experiments demonstrate that PHASE-Net achieves state-of-the-art performance with strong efficiency, offering a theoretically grounded and deployment-ready rPPG solution.
- Abstract(参考訳): リモートプラチスモグラフィー(rPPG)測定は、非接触的な生理的モニタリングを可能にするが、頭部運動下での精度低下と照明変化に悩まされる。
既存のディープラーニング手法はほとんどがヒューリスティックであり、理論的な基礎が欠如しており、堅牢性と解釈可能性に制限がある。
本研究では, 流体力学のナヴィエ・ストークス方程式から導かれる物理インフォームド rPPG パラダイムを提案し, パルス信号が自然に因果的畳み込みをもたらす2次力学系に従うことを示す。
これは、時間的畳み込みネットワーク(TCN)を使用するための理論的正当化を提供する。
本原理に基づいて,(1)ゼロFLOPs Axial Swapperモジュール,(2)信号量の多い領域をハイライトし雑音を抑えるためにフレーム毎にソフトな空間マスクを学習する適応的空間フィルタ,(3)正確なパルス回復のために長距離時間力学をモデル化したGated TCN,の3つの重要な構成要素を持つ軽量モデルであるPHASE-Netを設計する。
大規模な実験により、PHASE-Netは高い効率で最先端の性能を達成し、理論的に基礎と展開可能なrPPGソリューションを提供することが示された。
関連論文リスト
- Accelerating 3D Photoacoustic Computed Tomography with End-to-End Physics-Aware Neural Operators [74.65171736966131]
光音響計算トモグラフィ(PACT)は、光コントラストと超音波分解能を組み合わせることで、光拡散限界を超える深部像を実現する。
現在の実装では、高密度トランスデューサアレイと長い取得時間を必要とし、臨床翻訳を制限している。
本研究では,センサ計測からボリューム再構成まで,逆音響マッピングを直接学習する物理認識モデルであるPanoを紹介する。
論文 参考訳(メタデータ) (2025-09-11T23:12:55Z) - SinBasis Networks: Matrix-Equivalent Feature Extraction for Wave-Like Optical Spectrograms [8.37266944852829]
フラットな入力上での線形変換として、畳み込みと注意を再解釈する統一的行列等価フレームワークを提案する。
これらの変換をCNN、ViT、Capsuleアーキテクチャに埋め込むことで、Sin-Basis Networksは周期的なモチーフに対する感度を高めることができる。
論文 参考訳(メタデータ) (2025-05-06T16:16:42Z) - PhysLLM: Harnessing Large Language Models for Cross-Modal Remote Physiological Sensing [49.243031514520794]
LLM(Large Language Models)は、テキスト中心の設計のため、長距離信号の取得に優れる。
PhysLLMは最先端の精度とロバスト性を実現し、照明のバリエーションや動きのシナリオにまたがる優れた一般化を示す。
論文 参考訳(メタデータ) (2025-05-06T15:18:38Z) - Physics-constrained coupled neural differential equations for one dimensional blood flow modeling [0.3749861135832073]
計算心血管モデリングは、血流動態を理解する上で重要な役割を担っている。
有限要素法(FEM)に基づく従来の1次元モデルは、3次元平均解に比べて精度が低いことが多い。
本研究では1次元血流モデルの精度を向上させる物理制約付き機械学習手法を提案する。
論文 参考訳(メタデータ) (2024-11-08T15:22:20Z) - A Differential Smoothness-based Compact-Dynamic Graph Convolutional Network for Spatiotemporal Signal Recovery [9.369246678101048]
本稿では、時間的信号回復のためのコンパクト・フォールド・コングラフ・ネットワーク(CDCN)を提案する。
実世界のデータセットの実験では、CDCNは時間的信号回復の最先端モデルよりも大幅に優れていた。
論文 参考訳(メタデータ) (2024-08-06T06:42:53Z) - KFD-NeRF: Rethinking Dynamic NeRF with Kalman Filter [49.85369344101118]
KFD-NeRFは,Kalmanフィルタに基づく効率的かつ高品質な運動再構成フレームワークと統合された,新しい動的ニューラル放射場である。
我々のキーとなる考え方は、動的放射場を、観測と予測という2つの知識源に基づいて時間的に異なる状態が推定される動的システムとしてモデル化することである。
我々のKFD-NeRFは、同等の計算時間と最先端の視線合成性能で、徹底的な訓練を施した類似または優れた性能を示す。
論文 参考訳(メタデータ) (2024-07-18T05:48:24Z) - SEGNO: Generalizing Equivariant Graph Neural Networks with Physical
Inductive Biases [66.61789780666727]
等変性を維持しながら, 2階連続性をGNNに組み込む方法を示す。
また、SEGNOに関する理論的知見も提供し、隣接する状態間の一意の軌跡を学習できることを強調している。
我々のモデルは最先端のベースラインよりも大幅に改善されている。
論文 参考訳(メタデータ) (2023-08-25T07:15:58Z) - PhysFormer: Facial Video-based Physiological Measurement with Temporal
Difference Transformer [55.936527926778695]
近年のディープラーニングアプローチは、時間的受容の限られた畳み込みニューラルネットワークを用いた微妙なrの手がかりのマイニングに重点を置いている。
本稿では,エンドツーエンドのビデオトランスをベースとしたアーキテクチャであるPhysFormerを提案する。
論文 参考訳(メタデータ) (2021-11-23T18:57:11Z) - Non-contact PPG Signal and Heart Rate Estimation with Multi-hierarchical
Convolutional Network [12.119293125608976]
心拍数(HR)は人体の重要な生理的パラメータである。
本研究では,顔ビデオクリップからHRを推定できる,効率的な多階層・畳み込みネットワークを提案する。
論文 参考訳(メタデータ) (2021-04-06T03:04:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。