論文の概要: ELPG-DTFS: Prior-Guided Adaptive Time-Frequency Graph Neural Network for EEG Depression Diagnosis
- arxiv url: http://arxiv.org/abs/2509.24860v1
- Date: Mon, 29 Sep 2025 14:44:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-30 22:32:20.054446
- Title: ELPG-DTFS: Prior-Guided Adaptive Time-Frequency Graph Neural Network for EEG Depression Diagnosis
- Title(参考訳): ELPG-DTFS:脳波低下診断のための事前誘導適応時間周波数グラフニューラルネットワーク
- Authors: Jingru Qiu, Jiale Liang, Xuanhan Fan, Mingda Zhang, Zhenli He,
- Abstract要約: 本稿では,事前誘導型適応時間周波数グラフニューラルネットワークELPG-DTFSを提案する。
128チャンネルのMODMAデータセット(53名の被験者)では、ELPG-DTFSは97.63%の精度と97.33%のF1を達成した。
- 参考スコア(独自算出の注目度): 6.251217907978012
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Timely and objective screening of major depressive disorder (MDD) is vital, yet diagnosis still relies on subjective scales. Electroencephalography (EEG) provides a low-cost biomarker, but existing deep models treat spectra as static images, fix inter-channel graphs, and ignore prior knowledge, limiting accuracy and interpretability. We propose ELPG-DTFS, a prior-guided adaptive time-frequency graph neural network that introduces: (1) channel-band attention with cross-band mutual information, (2) a learnable adjacency matrix for dynamic functional links, and (3) a residual knowledge-graph pathway injecting neuroscience priors. On the 128-channel MODMA dataset (53 subjects), ELPG-DTFS achieves 97.63% accuracy and 97.33% F1, surpassing the 2025 state-of-the-art ACM-GNN. Ablation shows that removing any module lowers F1 by up to 4.35, confirming their complementary value. ELPG-DTFS thus offers a robust and interpretable framework for next-generation EEG-based MDD diagnostics.
- Abstract(参考訳): 大うつ病(MDD)のタイムリーで客観的なスクリーニングは重要であるが、診断は主観的尺度に依存している。
脳波検査(EEG)は低コストのバイオマーカーを提供するが、既存のディープモデルは、スペクトルを静的画像として扱い、チャネル間グラフを修正し、事前の知識を無視し、精度と解釈可能性を制限する。
ELPG-DTFSは,(1)クロスバンド相互情報を用いたチャネルバンドアテンション,(2)動的機能リンクのための学習可能な隣接行列,(3)神経科学の先行点を注入する残留知識グラフ経路を提案する。
128チャンネルのMODMAデータセット(53名の被験者)では、ELPG-DTFSは97.63%の精度と97.33%のF1を達成した。
アブレーションは、任意のモジュールを削除することでF1を最大4.35まで下げ、相補的な値を確認することを示している。
ELPG-DTFSは、次世代のEEGベースのMDD診断のための堅牢で解釈可能なフレームワークを提供する。
関連論文リスト
- FoundationalECGNet: A Lightweight Foundational Model for ECG-based Multitask Cardiac Analysis [1.1666234644810893]
FoundationalECGNetは、ECGの自動分類のための基礎的なフレームワークである。
はじめに正常心電図信号と異常心電図信号を区別し、次に異常心電図信号を5つの心臓状態の1つに分類する。
伝導障害および肥大症に対する99%のF1スコアを含む多クラス疾患検出における最先端のパフォーマンスを示す。
論文 参考訳(メタデータ) (2025-09-10T19:48:07Z) - Graph-Based Spatio-temporal Attention and Multi-Scale Fusion for Clinically Interpretable, High-Fidelity Fetal ECG Extraction [3.5236401979395833]
先天性心疾患 (CHD) が最も一般的な新生児の異常であり、早期発見が早期発見の必要性を浮き彫りにしている。
しかし,腹壁心電図(aECG)の胎児心電図(fECG)信号は母体心電図やノイズによって隠蔽されることが多く,低信号-雑音比(SNR)条件下での従来の手法に挑戦する。
本稿では,グラフニューラルネットワークとマルチスケール拡張トランスフォーマを統合し,動的にリード間相関をモデル化し,クリーンなfECG信号を抽出する深層学習フレームワークを提案する。
論文 参考訳(メタデータ) (2025-09-05T19:44:21Z) - Graph Attention Networks for Detecting Epilepsy from EEG Signals Using Accessible Hardware in Low-Resource Settings [45.62331048595689]
低所得国では、貧弱な神経科医や高価な診断ツールのためにてんかんが診断されていない。
低コストのEEGハードウェアからてんかんを検出するためのグラフベースのディープラーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2025-07-20T20:44:39Z) - Finetuning and Quantization of EEG-Based Foundational BioSignal Models on ECG and PPG Data for Blood Pressure Estimation [53.2981100111204]
光胸腺撮影と心電図は、連続血圧モニタリング(BP)を可能にする可能性がある。
しかし、データ品質と患者固有の要因の変化のため、正確で堅牢な機械学習(ML)モデルは依然として困難である。
本研究では,1つのモータリティで事前学習したモデルを効果的に利用して,異なる信号タイプの精度を向上させる方法について検討する。
本手法は, 拡張期BPの最先端精度を約1.5倍に向上し, 拡張期BPの精度を1.5倍に向上させる。
論文 参考訳(メタデータ) (2025-02-10T13:33:12Z) - Topological Feature Search Method for Multichannel EEG: Application in ADHD classification [13.381770446807016]
トポロジカルデータ分析はADHD分類の新しい視点を提供する。
本稿では,ADHDにおけるマルチチャネル脳波に適用可能な拡張型TDA手法を提案する。
その結果、精度、感度、特異性はそれぞれ78.27%、80.62%、75.63%に達した。
論文 参考訳(メタデータ) (2024-04-10T01:37:41Z) - Integrative Deep Learning Framework for Parkinson's Disease Early Detection using Gait Cycle Data Measured by Wearable Sensors: A CNN-GRU-GNN Approach [0.3222802562733786]
対象のバイナリ分類に適した,先駆的な深層学習アーキテクチャを提案する。
我々のモデルは、1D畳み込みニューラルネットワーク(CNN)、GRU(Gated Recurrent Units)、GNN(Graph Neural Network)のパワーを利用する。
提案モデルでは, 99.51%, 99.57%, 99.71%, 99.64%のスコアが得られた。
論文 参考訳(メタデータ) (2024-04-09T15:19:13Z) - Improving Diffusion Models for ECG Imputation with an Augmented Template
Prior [43.6099225257178]
ノイズと品質の悪い録音は、モバイルヘルスシステムを使って収集された信号にとって大きな問題である。
近年の研究では、確率的時系列モデルによるECGの欠落値の計算が検討されている。
本稿では,様々な健康状態の事前情報として,テンプレート誘導型拡散確率モデル(DDPM)PulseDiffを提案する。
論文 参考訳(メタデータ) (2023-10-24T11:34:15Z) - Generalizing electrocardiogram delineation: training convolutional
neural networks with synthetic data augmentation [63.51064808536065]
ECGのデライン化のための既存のデータベースは小さく、サイズやそれらが表す病態の配列に不足している。
まず、原データベースから抽出した基本セグメントのプールを与えられたECGトレースを確率的に合成し、その整合性のある合成トレースに配置するための一連のルールを考案した。
第二に、2つの新しいセグメンテーションに基づく損失関数が開発され、これは、正確な数の独立構造の予測を強制し、サンプル数の削減に焦点をあてて、より密接なセグメンテーション境界を創出することを目的としている。
論文 参考訳(メタデータ) (2021-11-25T10:11:41Z) - ECG-DelNet: Delineation of Ambulatory Electrocardiograms with Mixed
Quality Labeling Using Neural Networks [69.25956542388653]
ディープラーニング(DL)アルゴリズムは、学術的、産業的にも重くなっている。
セグメンテーションフレームワークにECGの検出とデライン化を組み込むことにより、低解釈タスクにDLをうまく適用できることを実証する。
このモデルは、PhyloNetのQTデータベースを使用して、105個の増幅ECG記録から訓練された。
論文 参考訳(メタデータ) (2020-05-11T16:29:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。