論文の概要: Uncertainty-Guided Expert-AI Collaboration for Efficient Soil Horizon Annotation
- arxiv url: http://arxiv.org/abs/2509.24873v1
- Date: Mon, 29 Sep 2025 14:54:23 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-30 22:32:20.061821
- Title: Uncertainty-Guided Expert-AI Collaboration for Efficient Soil Horizon Annotation
- Title(参考訳): 効率的な土壌水平アノテーションのための不確実性ガイド付きエキスパートAIコラボレーション
- Authors: Teodor Chiaburu, Vipin Singh, Frank Haußer, Felix Bießmann,
- Abstract要約: 土壌プロファイルを記述するためのマルチモーダルマルチタスクモデルである$textitSoilNet$に共形予測を適用する。
我々は,モデルの不確実性が高い場合に,基本真理アノテーションを得るための限られた予算が利用できる,シミュレーションされたHILアノテーションパイプラインを設計する。
実験により、SoilNetの適合性は回帰タスクにおけるより効率的なアノテーションと分類タスクにおける同等のパフォーマンススコアをもたらすことが示された。
- 参考スコア(独自算出の注目度): 0.13999481573773068
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Uncertainty quantification is essential in human-machine collaboration, as human agents tend to adjust their decisions based on the confidence of the machine counterpart. Reliably calibrated model uncertainties, hence, enable more effective collaboration, targeted expert intervention and more responsible usage of Machine Learning (ML) systems. Conformal prediction has become a well established model-agnostic framework for uncertainty calibration of ML models, offering statistically valid confidence estimates for both regression and classification tasks. In this work, we apply conformal prediction to $\textit{SoilNet}$, a multimodal multitask model for describing soil profiles. We design a simulated human-in-the-loop (HIL) annotation pipeline, where a limited budget for obtaining ground truth annotations from domain experts is available when model uncertainty is high. Our experiments show that conformalizing SoilNet leads to more efficient annotation in regression tasks and comparable performance scores in classification tasks under the same annotation budget when tested against its non-conformal counterpart. All code and experiments can be found in our repository: https://github.com/calgo-lab/BGR
- Abstract(参考訳): 人間のエージェントはマシンの信頼性に基づいて意思決定を調整する傾向があるため、人間と機械の協調には不確かさの定量化が不可欠である。
信頼性の高いキャリブレーションモデルの不確実性により、より効果的なコラボレーション、専門家の介入、マシンラーニング(ML)システムのより責任ある使用が可能になる。
コンフォーマル予測は、回帰タスクと分類タスクの両方に対して統計的に妥当な信頼推定を提供するMLモデルの不確実性校正のための、よく確立されたモデルに依存しないフレームワークとなっている。
本研究では,土壌プロファイルを記述するためのマルチモーダルマルチタスクモデルである$\textit{SoilNet}$に共形予測を適用する。
我々は、モデル不確実性が高い場合に、ドメインの専門家から真理アノテーションを得るための限られた予算が利用できる、シミュレーションされたHIL(Human-in-the-loop)アノテーションパイプラインを設計する。
実験の結果,SoilNetの適合性は回帰タスクにおいてより効率的なアノテーションとなり,非コンフォーマルなタスクに対してテストすると,同一のアノテーション予算下での分類タスクにおいて同等のパフォーマンススコアが得られることがわかった。
すべてのコードと実験は、私たちのリポジトリで見ることができる。
関連論文リスト
- Unveil Sources of Uncertainty: Feature Contribution to Conformal Prediction Intervals [0.3495246564946556]
共形予測(CP)に基づく新しいモデルに依存しない不確実性属性(UA)法を提案する。
我々は,CP間隔特性-幅や境界条件-を値関数として定義し,入力特徴に対する予測不確かさを属性とする協調ゲームを定義する。
人工ベンチマークと実世界のデータセットを用いた実験は、我々のアプローチの実用的有用性と解釈的深さを実証する。
論文 参考訳(メタデータ) (2025-05-19T13:49:05Z) - Efficient distributional regression trees learning algorithms for calibrated non-parametric probabilistic forecasts [1.0108345815812638]
回帰の文脈では、条件平均を推定する代わりに、出力の予測間隔を生成することでこれを実現できる。
本稿では, WIS や CRPS の損失関数の確率回帰木を学習するための新しいアルゴリズムを提案する。
論文 参考訳(メタデータ) (2025-02-07T18:39:35Z) - Boosted Control Functions: Distribution generalization and invariance in confounded models [10.503777692702952]
非線形で非同定可能な構造関数が存在する場合でも分布の一般化を可能にする不変性という強い概念を導入する。
フレキシブルな機械学習手法を用いて,ブースト制御関数(BCF)を推定する制御Twicingアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-10-09T15:43:46Z) - Improving Adaptive Conformal Prediction Using Self-Supervised Learning [72.2614468437919]
我々は、既存の予測モデルの上に自己教師付きプレテキストタスクを持つ補助モデルを訓練し、自己教師付きエラーを付加的な特徴として用いて、非整合性スコアを推定する。
合成データと実データの両方を用いて、効率(幅)、欠陥、共形予測間隔の超過といった付加情報の利点を実証的に実証する。
論文 参考訳(メタデータ) (2023-02-23T18:57:14Z) - When Demonstrations Meet Generative World Models: A Maximum Likelihood
Framework for Offline Inverse Reinforcement Learning [62.00672284480755]
本稿では, 専門家エージェントから, 一定の有限個の実演において観測された動作を過小評価する報酬と環境力学の構造を復元することを目的とする。
タスクを実行するための正確な専門知識モデルは、臨床的意思決定や自律運転のような安全に敏感な応用に応用できる。
論文 参考訳(メタデータ) (2023-02-15T04:14:20Z) - Compound Density Networks for Risk Prediction using Electronic Health
Records [1.1786249372283562]
複合密度ネットワーク(CDNet)を用いたエンドツーエンド統合手法を提案する。
CDNetは、単一のフレームワーク内で計算方法と予測モデルを調整できるようにする。
我々は,MIMIC-IIIデータセット上での死亡予測タスクにおいてCDNetを検証した。
論文 参考訳(メタデータ) (2022-08-02T09:04:20Z) - Leveraging Unlabeled Data to Predict Out-of-Distribution Performance [63.740181251997306]
実世界の機械学習デプロイメントは、ソース(トレーニング)とターゲット(テスト)ディストリビューションのミスマッチによって特徴づけられる。
本研究では,ラベル付きソースデータとラベルなしターゲットデータのみを用いて,対象領域の精度を予測する手法を検討する。
本稿では,モデルの信頼度をしきい値として学習し,精度をラベルなし例のごく一部として予測する実践的手法である平均閾値保持信頼度(ATC)を提案する。
論文 参考訳(メタデータ) (2022-01-11T23:01:12Z) - Meta-Learned Confidence for Few-shot Learning [60.6086305523402]
数ショットのメトリックベースのアプローチのための一般的なトランスダクティブ推論手法は、最も確実なクエリ例の平均で、各クラスのプロトタイプを更新することである。
本稿では,各クエリの信頼度をメタラーニングして,ラベルのないクエリに最適な重みを割り当てる手法を提案する。
4つのベンチマークデータセットに対してメタ学習の信頼度で、少数ショットの学習モデルを検証した。
論文 参考訳(メタデータ) (2020-02-27T10:22:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。