論文の概要: Mitigating Hallucination in Multimodal LLMs with Layer Contrastive Decoding
- arxiv url: http://arxiv.org/abs/2509.25177v1
- Date: Mon, 29 Sep 2025 17:59:16 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-01 14:44:59.898765
- Title: Mitigating Hallucination in Multimodal LLMs with Layer Contrastive Decoding
- Title(参考訳): 層状コントラストデコーディングによる多モードLDMにおける幻覚の緩和
- Authors: Bingkui Tong, Jiaer Xia, Kaiyang Zhou,
- Abstract要約: 我々はLayerCD(Layer Contrastive Decoding)と呼ばれる単純な手法を提案する。
LayerCDは、異なるレベルの視覚的特徴から生成された出力分布を対比することで幻覚を除去することを目的としている。
2つのベンチマークで広範な実験を行い、LayerCDが現在の最先端を著しく上回っていることを示す。
- 参考スコア(独自算出の注目度): 18.980167452015966
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multimodal Large Language Models (MLLMs) have shown impressive perception and reasoning capabilities, yet they often suffer from hallucinations -- generating outputs that are linguistically coherent but inconsistent with the context of the input image, including inaccuracies in objects, attributes, and relations. To address this challenge, we propose a simple approach called Layer Contrastive Decoding (LayerCD). Our design is motivated by the observation that shallow visual features are much more likely than deep visual features to cause an MLLM to hallucinate as they only capture biased, low-level information that is insufficient for high-level reasoning. Therefore, LayerCD aims to filter out hallucinations by contrasting the output distributions generated from visual features of different levels, specifically those from the shallow and deep layers of the vision encoder, respectively. We conduct extensive experiments on two hallucination benchmarks and show that LayerCD significantly outperforms current state-of-the-art. The code for LayerCD is available at https://github.com/maifoundations/LayerCD .
- Abstract(参考訳): MLLM(Multimodal Large Language Models)は印象的な知覚と推論能力を示すが、しばしば幻覚に悩まされる。
この課題に対処するために、LayerCD(LayerCD)と呼ばれる単純なアプローチを提案する。
我々のデザインは、浅い視覚的特徴が深い視覚的特徴よりもはるかに高い確率で、高いレベルの推論に不十分なバイアスのある低レベルの情報のみを捉えているため、MLLMが幻覚を引き起こす可能性があるという観察に動機づけられている。
そのため、レイヤCDは視覚的特徴、特に視覚エンコーダの浅い層と深い層から発生する出力分布を対比することにより幻覚を除去することを目的としている。
2つの幻覚ベンチマークで広範な実験を行い、LayerCDが現在の最先端を著しく上回っていることを示す。
LayerCDのコードはhttps://github.com/maifoundations/LayerCDで入手できる。
関連論文リスト
- Towards a Systematic Evaluation of Hallucinations in Large-Vision Language Models [57.58426038241812]
LVLM(Large Vision-Language Models)は、複雑なマルチモーダルタスクにおいて顕著な性能を示す。
これらのモデルは、画像から様々な視覚的実体を暗黙的に認識または推測する必要がある場合、まだ幻覚に悩まされている。
本稿では,視覚的質問応答(VQA)ベンチマークを提案する。
論文 参考訳(メタデータ) (2024-12-29T23:56:01Z) - Combating Multimodal LLM Hallucination via Bottom-Up Holistic Reasoning [151.4060202671114]
マルチモーダル大規模言語モデル(MLLM)は、視覚言語タスクを前進させる前例のない能力を示した。
本稿では,MLLMにおける幻覚に対処するためのボトムアップ推論フレームワークを提案する。
本フレームワークは、認識レベル情報と認知レベルコモンセンス知識を検証・統合することにより、視覚とテキストの両方の入力における潜在的な問題に体系的に対処する。
論文 参考訳(メタデータ) (2024-12-15T09:10:46Z) - VaLiD: Mitigating the Hallucination of Large Vision Language Models by Visual Layer Fusion Contrastive Decoding [38.23310445372371]
LVLM(Large Vision-Language Models)はマルチモーダルタスク推論において顕著な機能を示す。
彼らはしばしば、幻覚として知られる視覚的内容が正確に反映されていないように思われる応答を生成する。
近年のアプローチでは、推論段階における復号化戦略を調整することで幻覚を緩和するための訓練不要な手法が導入されている。
textbfVisutextbfal textbfLayer Fustextbfion textbfD
論文 参考訳(メタデータ) (2024-11-24T13:42:02Z) - MLLM can see? Dynamic Correction Decoding for Hallucination Mitigation [50.73561815838431]
MLLM(Multimodal Large Language Models)はしばしば幻覚現象を示す。
実験により,MLLMは最終出力のオブジェクトを誤って生成するが,前層の視覚的オブジェクトを認識できることがわかった。
そこで本研究では,MLLMs DeCoの動的補正復号法を提案する。この手法は,適切な先行層を適応的に選択し,最終層に知識を比例的に統合し,出力ロジットを調整する。
論文 参考訳(メタデータ) (2024-10-15T16:57:44Z) - From Pixels to Tokens: Revisiting Object Hallucinations in Large Vision-Language Models [15.401221354325672]
大型視覚モデル(LVLM)における幻覚は、視覚入力に表示されない物体を生成するという重要な課題である。
最近の研究では、幻覚は視覚的な入力の理解の欠如に起因しているが、より根本的な問題は無視されている。
本稿では,LVLMの幻覚をアーキテクチャの観点から再検討し,視覚エンコーダ(機能抽出)とモーダルアライメントモジュール(機能デカップリング)の主な原因について検討する。
論文 参考訳(メタデータ) (2024-10-09T11:46:32Z) - Mitigating Hallucinations in Large Vision-Language Models with Instruction Contrastive Decoding [25.489832294197797]
本稿では,LVLM推論における幻覚の低減を目的とした,命令コントラストデコーディング(ICD)手法を提案する。
本手法は,マルチモーダル核融合モジュールにおいて,外乱指示が幻覚を著しく悪化させるという観察に着想を得たものである。
論文 参考訳(メタデータ) (2024-03-27T16:04:47Z) - Mitigating Object Hallucinations in Large Vision-Language Models through
Visual Contrastive Decoding [125.05295513481035]
本稿では,オリジナルおよび歪曲された視覚入力から出力分布を対比する,シンプルでトレーニングのないVisual Contrastive Decoding(VCD)を紹介する。
提案したVCDは, 対象幻覚の2つの重要な原因である, 統計的偏見と単調な先行性に対する信頼度を効果的に低減する。
実験の結果,付加的なトレーニングや外部ツールの使用がなければ,異なるLVLMファミリーにおける物体幻覚の問題を著しく軽減できることがわかった。
論文 参考訳(メタデータ) (2023-11-28T16:26:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。