論文の概要: FedCLF - Towards Efficient Participant Selection for Federated Learning in Heterogeneous IoV Networks
- arxiv url: http://arxiv.org/abs/2509.25233v1
- Date: Thu, 25 Sep 2025 04:51:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-01 17:09:04.183859
- Title: FedCLF - Towards Efficient Participant Selection for Federated Learning in Heterogeneous IoV Networks
- Title(参考訳): 不均一IoVネットワークにおけるフェデレート学習のための効率的な参加者選択に向けたFedCLF
- Authors: Kasun Eranda Wijethilake, Adnan Mahmood, Quan Z. Sheng,
- Abstract要約: Federated Learning(FL)は、クライアントデータの代わりにトレーニング済みパラメータのみを共有することで、データのプライバシを保存する分散機械学習技術である。
本稿では,クライアントのサンプリング周波数を動的に調整するフィードバック制御機構と選択プロセスにおいて,キャリブレーション損失をユーティリティとして導入する,キャリブレーション損失とフィードバック制御を備えたFedCLFを提案する。
- 参考スコア(独自算出の注目度): 11.632031365965878
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated Learning (FL) is a distributed machine learning technique that preserves data privacy by sharing only the trained parameters instead of the client data. This makes FL ideal for highly dynamic, heterogeneous, and time-critical applications, in particular, the Internet of Vehicles (IoV) networks. However, FL encounters considerable challenges in such networks owing to the high data and device heterogeneity. To address these challenges, we propose FedCLF, i.e., FL with Calibrated Loss and Feedback control, which introduces calibrated loss as a utility in the participant selection process and a feedback control mechanism to dynamically adjust the sampling frequency of the clients. The envisaged approach (a) enhances the overall model accuracy in case of highly heterogeneous data and (b) optimizes the resource utilization for resource constrained IoV networks, thereby leading to increased efficiency in the FL process. We evaluated FedCLF vis-\`a-vis baseline models, i.e., FedAvg, Newt, and Oort, using CIFAR-10 dataset with varying data heterogeneity. Our results depict that FedCLF significantly outperforms the baseline models by up to a 16% improvement in high data heterogeneity-related scenarios with improved efficiency via reduced sampling frequency.
- Abstract(参考訳): Federated Learning(FL)は、クライアントデータの代わりにトレーニング済みパラメータのみを共有することで、データのプライバシを保存する分散機械学習技術である。
これによりFLは、特にInternet of Vehicles (IoV)ネットワークにおいて、非常に動的で、異質で、時間クリティカルなアプリケーションに理想的である。
しかし、FLは高データとデバイスの不均一性のため、そのようなネットワークでかなりの課題に直面している。
これらの課題に対処するために、選択プロセスにおいてキャリブレーション損失をユーティリティとして導入し、クライアントのサンプリング頻度を動的に調整するフィードバック制御機構であるFedCLF、すなわち、キャリブレーション損失とフィードバック制御を提案する。
構想されたアプローチ
(a)高度不均一なデータの場合の全体的なモデル精度を高め、
b) 資源制約されたIoVネットワークの資源利用を最適化することにより,FLプロセスの効率が向上する。
我々は、CIFAR-10データセットを用いて、FedCLF vis-\`a-visベースラインモデル、すなわち、FedAvg、Newt、Oortを評価した。
その結果,FedCLFはサンプリング周波数の低減による効率の向上により,高データ不均一性関連シナリオの最大16%の改善により,ベースラインモデルよりも大幅に優れていた。
関連論文リスト
- Efficient Federated Learning with Heterogeneous Data and Adaptive Dropout [62.73150122809138]
Federated Learning(FL)は、複数のエッジデバイスを使用したグローバルモデルの協調トレーニングを可能にする、有望な分散機械学習アプローチである。
動的不均一モデルアグリゲーション(FedDH)と適応ドロップアウト(FedAD)の2つの新しい手法を備えたFedDHAD FLフレームワークを提案する。
これら2つの手法を組み合わせることで、FedDHADは精度(最大6.7%)、効率(最大2.02倍高速)、コスト(最大15.0%小型)で最先端のソリューションを大幅に上回っている。
論文 参考訳(メタデータ) (2025-07-14T16:19:00Z) - FlexFed: Mitigating Catastrophic Forgetting in Heterogeneous Federated Learning in Pervasive Computing Environments [4.358456799125694]
広汎なコンピューティング環境(例えばヒューマンアクティビティ認識、HAR)は、リソース制約されたエンドデバイス、ストリーミングセンサーデータ、断続的なクライアント参加によって特徴づけられる。
我々は,効率的なメモリ使用のためにデータ保持を優先し,オフライントレーニング頻度を動的に調整する新しいFLアプローチFlexFedを提案する。
また、ストリーミングデータ、動的分散、不均衡、可用性の変動をシミュレートする現実的なHARベースの評価フレームワークを開発した。
論文 参考訳(メタデータ) (2025-05-19T14:23:37Z) - Over-the-Air Fair Federated Learning via Multi-Objective Optimization [52.295563400314094]
本稿では,公平なFLモデルを訓練するためのOTA-FFL(Over-the-air Fair Federated Learning Algorithm)を提案する。
OTA-FFLの公正性とロバストな性能に対する優位性を示す実験を行った。
論文 参考訳(メタデータ) (2025-01-06T21:16:51Z) - Learn More by Using Less: Distributed Learning with Energy-Constrained Devices [3.730504020733928]
Federated Learning(FL)は、分散モデルトレーニングのソリューションとして、分散化されたプライバシ保護デバイスに登場した。
本稿では,電池に制約のあるデバイス上でのクライアント選択とトレーニング作業の最適化を目的とした,エネルギーを意識したFLフレームワークであるLeanFedを提案する。
論文 参考訳(メタデータ) (2024-12-03T09:06:57Z) - Client Contribution Normalization for Enhanced Federated Learning [4.726250115737579]
スマートフォンやラップトップを含むモバイルデバイスは、分散化された異種データを生成する。
フェデレートラーニング(FL)は、データ共有のない分散デバイス間でグローバルモデルの協調トレーニングを可能にすることで、有望な代替手段を提供する。
本稿では、FLにおけるデータ依存的不均一性に着目し、局所的に訓練されたモデルから抽出された平均潜在表現を活用する新しいアプローチを提案する。
論文 参考訳(メタデータ) (2024-11-10T04:03:09Z) - Towards Resource-Efficient Federated Learning in Industrial IoT for Multivariate Time Series Analysis [50.18156030818883]
異常と欠落したデータは、産業応用における厄介な問題を構成する。
ディープラーニングによる異常検出が重要な方向として現れている。
エッジデバイスで収集されたデータは、ユーザのプライバシを含む。
論文 参考訳(メタデータ) (2024-11-06T15:38:31Z) - An Aggregation-Free Federated Learning for Tackling Data Heterogeneity [50.44021981013037]
フェデレートラーニング(FL)は、分散データセットからの知識を活用する効果に頼っている。
従来のFLメソッドでは、クライアントが前回のトレーニングラウンドからサーバが集約したグローバルモデルに基づいてローカルモデルを更新するアグリゲート-then-adaptフレームワークを採用している。
我々は,新しいアグリゲーションフリーFLアルゴリズムであるFedAFを紹介する。
論文 参考訳(メタデータ) (2024-04-29T05:55:23Z) - DYNAMITE: Dynamic Interplay of Mini-Batch Size and Aggregation Frequency
for Federated Learning with Static and Streaming Dataset [23.11152686493894]
Federated Learning(FL)は、異種エッジデバイスをコーディネートして、プライベートデータを共有せずにモデルトレーニングを実行する分散学習パラダイムである。
本稿では、バッチサイズと集約周波数の相互作用を利用して、動的FLトレーニングにおける収束、コスト、完了時間間のトレードオフをナビゲートする新しい解析モデルと最適化アルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-10-20T08:36:12Z) - Analysis and Optimization of Wireless Federated Learning with Data
Heterogeneity [72.85248553787538]
本稿では、データの不均一性を考慮した無線FLの性能解析と最適化と、無線リソース割り当てについて述べる。
ロス関数の最小化問題を、長期エネルギー消費と遅延の制約の下で定式化し、クライアントスケジューリング、リソース割り当て、ローカルトレーニングエポック数(CRE)を共同で最適化する。
実世界のデータセットの実験により、提案アルゴリズムは学習精度とエネルギー消費の点で他のベンチマークよりも優れていることが示された。
論文 参考訳(メタデータ) (2023-08-04T04:18:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。