論文の概要: Fair Classification by Direct Intervention on Operating Characteristics
- arxiv url: http://arxiv.org/abs/2509.25481v1
- Date: Mon, 29 Sep 2025 20:36:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-01 17:09:04.313069
- Title: Fair Classification by Direct Intervention on Operating Characteristics
- Title(参考訳): 運転特性の直接干渉による公平な分類
- Authors: Kevin Jiang, Edgar Dobriban,
- Abstract要約: 複数のグループフェアネス制約を持つ二項分類のための属性認識設定において、グループフェアネスの下で新しい分類器を開発する。
本稿では,事前学習した基底分類器の動作特性を直接介入して,線形分数制約に適用可能な新しい手法を提案する。
標準データセットでは, DP, EO, PPをほとんど介入せず, 精度がほぼ低下し, 同時に近似DP, EO, PPを満足する。
- 参考スコア(独自算出の注目度): 16.692307869326395
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We develop new classifiers under group fairness in the attribute-aware setting for binary classification with multiple group fairness constraints (e.g., demographic parity (DP), equalized odds (EO), and predictive parity (PP)). We propose a novel approach, applicable to linear fractional constraints, based on directly intervening on the operating characteristics of a pre-trained base classifier, by (i) identifying optimal operating characteristics using the base classifier's group-wise ROC convex hulls and (ii) post-processing the base classifier to match those targets. As practical post-processors, we consider randomizing a mixture of group-wise thresholding rules subject to minimizing the expected number of interventions. We further extend our approach to handle multiple protected attributes and multiple linear fractional constraints. On standard datasets (COMPAS and ACSIncome), our methods simultaneously satisfy approximate DP, EO, and PP with few interventions and a near-oracle drop in accuracy; comparing favorably to previous methods.
- Abstract(参考訳): 複数のグループフェアネス制約(DP)、等化奇数(EO)、予測パリティ(PP)を含む二項分類の属性認識設定において、グループフェアネスの下で新しい分類器を開発する。
事前学習ベース分類器の動作特性に直接介入する線形分数制約に適用可能な新しい手法を提案する。
一 基本分類器のグループワイドROC凸船体を用いた最適動作特性の同定及び評価
(ii) それらのターゲットにマッチするベース分類器を後処理する。
実用的な後処理系として、期待される介入回数を最小限に抑えるために、グループワイドのしきい値規則の混合をランダム化することを検討する。
さらに、複数の保護属性と複数の線形分数制約を扱うために、我々のアプローチを拡張します。
標準データセット(COMPAS, ACSIncome)では,提案手法がDP, EO, PPとほぼ一致し, 介入がほとんどなく, 精度もほぼ低下している。
関連論文リスト
- Optimal Transport-based Conformal Prediction [8.302146576157497]
コンフォーマル予測(CP)は、ブラックボックス学習モデルにおける不確実性のための原則化されたフレームワークである。
レンズを通して予測スコア関数を処理する新しいCPプロシージャを提案する。
次に,マルチ出力回帰とマルチクラス分類の定量化に本手法を適用した。
論文 参考訳(メタデータ) (2025-01-31T09:48:28Z) - A Unified Post-Processing Framework for Group Fairness in Classification [10.615965454674901]
本稿では, グループフェアネスの基準である統計パリティ, 平等機会, 等化確率を1つの枠組みでカバーする, 公平分類のためのポストプロセッシングアルゴリズムを提案する。
我々のアルゴリズムは「LinearPost」と呼ばれ、(不公平な)ベース予測器の予測を、(予測された)グループメンバーシップの重み付けによる「公正リスク」で線形変換することで、公正なポストホックを実現する。
論文 参考訳(メタデータ) (2024-05-07T05:58:44Z) - A structured regression approach for evaluating model performance across intersectional subgroups [53.91682617836498]
分散評価(disaggregated evaluation)は、AIフェアネスアセスメントにおける中心的なタスクであり、AIシステムのさまざまなサブグループ間でのパフォーマンスを測定することを目的としている。
非常に小さなサブグループであっても,信頼性の高いシステム性能推定値が得られることを示す。
論文 参考訳(メタデータ) (2024-01-26T14:21:45Z) - A One-shot Framework for Distributed Clustered Learning in Heterogeneous
Environments [54.172993875654015]
異種環境における分散学習のためのコミュニケーション効率化手法のファミリーを提案する。
ユーザによるローカル計算に基づくワンショットアプローチと、サーバにおけるクラスタリングベースのアグリゲーションステップは、強力な学習保証を提供する。
厳密な凸問題に対しては,ユーザ毎のデータ点数がしきい値を超える限り,提案手法はサンプルサイズの観点から順序最適平均二乗誤差率を達成する。
論文 参考訳(メタデータ) (2022-09-22T09:04:10Z) - Self-Certifying Classification by Linearized Deep Assignment [65.0100925582087]
そこで我々は,PAC-Bayesリスク認定パラダイム内で,グラフ上のメトリックデータを分類するための新しい深層予測器のクラスを提案する。
PAC-Bayesの最近の文献とデータに依存した先行研究に基づいて、この手法は仮説空間上の後続分布の学習を可能にする。
論文 参考訳(メタデータ) (2022-01-26T19:59:14Z) - Towards Uncovering the Intrinsic Data Structures for Unsupervised Domain
Adaptation using Structurally Regularized Deep Clustering [119.88565565454378]
Unsupervised Domain Adapt (UDA) は、ターゲットドメイン上のラベルなしデータの予測を行う分類モデルを学ぶことである。
本稿では,対象データの正規化判別クラスタリングと生成クラスタリングを統合する構造的正規化深層クラスタリングのハイブリッドモデルを提案する。
提案するH-SRDCは, インダクティブ設定とトランスダクティブ設定の両方において, 既存の手法よりも優れている。
論文 参考訳(メタデータ) (2020-12-08T08:52:00Z) - Selective Classification via One-Sided Prediction [54.05407231648068]
片側予測(OSP)に基づく緩和は、実際に関係する高目標精度体制において、ほぼ最適カバレッジが得られるSCスキームをもたらす。
理論的には,SCとOSPのバウンダリ一般化を導出し,その手法が小さな誤差レベルでのカバレッジにおいて,技術手法の状態を強く上回ることを示す。
論文 参考訳(メタデータ) (2020-10-15T16:14:27Z) - Covariance-engaged Classification of Sets via Linear Programming [16.11804985840274]
集合分類は、個々の観察を別々に分類するのではなく、一連の観察を全体として分類することを目的としている。
ベイズリスクのバウンディングにおいて,集合内の観測回数が重要な役割を担っていることを示す。
本枠組みでは,集合分類の新しい手法を提案する。
論文 参考訳(メタデータ) (2020-06-26T07:20:15Z) - Fairness with Overlapping Groups [15.154984899546333]
標準的なゴールは、複数の重なり合うグループ間での公平度メトリクスの平等を保証することである。
本稿では、確率論的人口分析を用いて、この標準公正分類問題を再考する。
提案手法は,既存のグループフェア分類手法を統一し,様々な非分解性性能指標と公正度尺度の拡張を可能にする。
論文 参考訳(メタデータ) (2020-06-24T05:01:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。