論文の概要: Transformer-Based Rate Prediction for Multi-Band Cellular Handsets
- arxiv url: http://arxiv.org/abs/2509.25722v1
- Date: Tue, 30 Sep 2025 03:29:42 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-01 17:09:04.410159
- Title: Transformer-Based Rate Prediction for Multi-Band Cellular Handsets
- Title(参考訳): マルチバンドセルハンドセットのトランスフォーマーによるレート予測
- Authors: Ruibin Chen, Haozhe Lei, Hao Guo, Marco Mezzavilla, Hitesh Poddar, Tomoki Yoshimura, Sundeep Rangan,
- Abstract要約: 本稿では,複数のアンテナアレイと帯域にまたがる達成可能な速度の予測問題について,より少ない歴史的測定値で定式化する。
本稿では,レート履歴を入力とし,アレイごとのレート予測を出力するトランスフォーマーベースのニューラルアーキテクチャを提案する。
- 参考スコア(独自算出の注目度): 12.98649910883397
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Cellular wireless systems are witnessing the proliferation of frequency bands over a wide spectrum, particularly with the expansion of new bands in FR3. These bands must be supported in user equipment (UE) handsets with multiple antennas in a constrained form factor. Rapid variations in channel quality across the bands from motion and hand blockage, limited field-of-view of antennas, and hardware and power-constrained measurement sparsity pose significant challenges to reliable multi-band channel tracking. This paper formulates the problem of predicting achievable rates across multiple antenna arrays and bands with sparse historical measurements. We propose a transformer-based neural architecture that takes asynchronous rate histories as input and outputs per-array rate predictions. Evaluated on ray-traced simulations in a dense urban micro-cellular setting with FR1 and FR3 arrays, our method demonstrates superior performance over baseline predictors, enabling more informed band selection under realistic mobility and hardware constraints.
- Abstract(参考訳): セル無線システムは、特にFR3における新しいバンドの拡大とともに、広帯域での周波数帯域の拡散を目撃している。
これらのバンドは、複数のアンテナを持つユーザ機器(UE)ハンドセットで、制約のあるフォームファクターでサポートされなければならない。
動作や手詰まり、アンテナの視野の制限、ハードウェアと電力制約のある測定空間の急激な変化は、信頼性の高いマルチバンドチャネル追跡に重大な課題をもたらす。
本稿では,複数のアンテナアレイと帯域にまたがる達成可能な速度の予測問題について,より少ない歴史的測定値で定式化する。
本稿では、非同期レート履歴を入力とし、アレイレートの予測を出力するトランスフォーマーベースのニューラルアーキテクチャを提案する。
FR1 と FR3 アレイを用いた高密度都市マイクロセル環境におけるレイトレーシングシミュレーションにより,ベースライン予測器よりも優れた性能を示し,現実的なモビリティとハードウェア制約下でのバンド選択を可能にする。
関連論文リスト
- Communication-Efficient Federated Learning by Quantized Variance Reduction for Heterogeneous Wireless Edge Networks [55.467288506826755]
フェデレーテッド・ラーニング(FL)は、無線エッジネットワークにおけるローカル・プライバシ・アウェア・コラボレーティブ・モデルトレーニングの有効なソリューションとして認識されている。
既存の通信効率の高いFLアルゴリズムは、デバイス間の大きなばらつきを低減できない。
本稿では,高度分散還元方式に依存する新しい通信効率FLアルゴリズムであるFedQVRを提案する。
論文 参考訳(メタデータ) (2025-01-20T04:26:21Z) - Communication-Efficient Federated Learning over Wireless Channels via Gradient Sketching [23.523969065599193]
帯域制限の無線チャネルに適したFPS(Federated Proximal Sketching)を提案する。
FPSはバンド幅のボトルネックに対処し、効率的な圧縮を可能にするためにカウントスケッチデータ構造を使用する。
合成および実世界の両方のデータセットにおける最先端手法と比較して,FPSの安定性,精度,効率性を実証する。
論文 参考訳(メタデータ) (2024-10-30T20:01:08Z) - Disentangled Representation Learning for RF Fingerprint Extraction under
Unknown Channel Statistics [77.13542705329328]
本稿では,まず,不整合表現学習(DRL)の枠組みを提案し,入力信号を逆学習によりデバイス関連成分とデバイス関連成分に分解する。
提案フレームワークにおける暗黙的なデータ拡張は、デバイス非関連チャネル統計の過度な適合を避けるために、RFF抽出器に正規化を課す。
実験により、DR-RFFと呼ばれる提案手法は、未知の複雑な伝播環境に対する一般化可能性の観点から従来の手法よりも優れていることが示された。
論文 参考訳(メタデータ) (2022-08-04T15:46:48Z) - Deep Learning-Based Synchronization for Uplink NB-IoT [72.86843435313048]
狭帯域モノのインターネット(NB-IoT)における狭帯域物理ランダムアクセスチャネル(NPRACH)のデバイス検出と到着時刻推定のためのニューラルネットワーク(NN)に基づくアルゴリズムを提案する。
導入されたNNアーキテクチャは、残余の畳み込みネットワークと、5Gニューラジオ(5G NR)仕様のプリアンブル構造に関する知識を利用する。
論文 参考訳(メタデータ) (2022-05-22T12:16:43Z) - Extensible circuit-QED architecture via amplitude- and
frequency-variable microwaves [52.77024349608834]
固定周波数キュービットとマイクロ波駆動カプラを組み合わせた回路QEDアーキテクチャを提案する。
ドライブパラメータは、選択的な2ビット結合とコヒーレントエラー抑制を可能にする調整可能なノブとして現れる。
論文 参考訳(メタデータ) (2022-04-17T22:49:56Z) - DEFORM: A Practical, Universal Deep Beamforming System [4.450750414447688]
我々は、ユニバーサルレシーバービームフォーミング技術を紹介し、設計し、評価する。
我々のアプローチとシステムDEFORMは、深層学習(DL)ベースのRXビームフォーミングであり、マルチアンテナRF受信機において大きな利益をもたらす。
論文 参考訳(メタデータ) (2022-03-18T03:52:18Z) - Deep Learning Based Hybrid Precoding in Dual-Band Communication Systems [34.03893373401685]
本研究では,サブ6GHz帯から抽出した空間的・時間的情報を用いてミリ波帯のビームを予測・追跡する深層学習手法を提案する。
サブ6GHz帯とミリ波帯の両方で動作するデュアルバンド通信システムについて検討する。
論文 参考訳(メタデータ) (2021-07-16T12:10:32Z) - Two-step Machine Learning Approach for Channel Estimation with Mixed
Resolution RF Chains [19.0581196881206]
機械学習(ML)アルゴリズムを適用し,効率的なアップリンクチャネル推定手法を提案する。
第1ステップでは、条件付き生成逆転ネットワーク(cGAN)は、フル解像度RFチェーンの限られたセットから低解像度RFチェーンアンテナ要素の残りの部分まで、無線チャネルを予測します。
長期長期メモリ(LSTM)ニューラルネットワークは、低分解能RFチェーンアンテナ要素からさらなる位相情報を抽出します。
論文 参考訳(メタデータ) (2021-01-24T12:33:54Z) - Deep Learning Based Antenna Selection for Channel Extrapolation in FDD
Massive MIMO [54.54508321463112]
大規模なマルチインプット多重出力(MIMO)システムでは、多数のアンテナが正確なチャネル状態情報を取得する上で大きな課題となる。
ニューラルネットワーク(NN)を用いて、アップリンクとダウンリンクチャネルデータセット間の固有の接続を捕捉し、アップリンクチャネル状態情報のサブセットからダウンリンクチャネルを外挿する。
アンテナサブセット選択問題について検討し、最高のチャネル外挿を実現し、NNのデータサイズを小さくする。
論文 参考訳(メタデータ) (2020-09-03T13:38:52Z) - Harnessing Wireless Channels for Scalable and Privacy-Preserving
Federated Learning [56.94644428312295]
無線接続は、フェデレートラーニング(FL)の実現に有効である
Channel randomnessperturbs 各ワーカはモデル更新をインバージョンし、複数のワーカはバンド幅に大きな干渉を発生させる。
A-FADMMでは、すべてのワーカーがモデル更新をアナログ送信を介して単一のチャンネルを使用してパラメータサーバにアップロードする。
これは通信帯域幅を節約するだけでなく、各ワーカーの正確なモデル更新軌跡を任意の盗聴者から隠蔽する。
論文 参考訳(メタデータ) (2020-07-03T16:31:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。